56 resultados para Semivolatile Organic Compounds
em Queensland University of Technology - ePrints Archive
Resumo:
Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75 to 300 µm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 µm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 was found to dominate SVOC and NVOC build-up on roads.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in <1µm to 150µm fractions and for ethylbenzene in 150µm to >300µm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Traffic emissions are considered as a major source of pollutants, particularly ultrafine particles, in the urban environment. There is an increased concern about airborne particles not only because of their environmental effects but also due to their potential adverse health effects on humans. There have been a number of studies related to the number concentration and size distribution of these particles but studies on the chemical composition of aerosols, especially in the school environment, are very limited. Mejia et. al (2011) reviewed studies on the exposure to and impact of air pollutants on school children and found that there were only a handful of studies on this topic. Therefore, the main focus of this research is on an analysis of the chemical composition of airborne particles, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools, as a part of “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH) project. The aim of the present study was to find out the concentrations of different Volatile Organic Compounds (VOCs) in both outdoor and indoor locations from six different schools in Brisbane.
Resumo:
There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.
Resumo:
Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.
Resumo:
The occurrence and levels of airborne polycyclic aromatic hydrocarbons and volatile organic compounds in selected non-industrial environments in Brisbane have been investigated as part of an integrated indoor air quality assessment program. The most abundant and most frequently encountered compounds include, nonanal, decanal, texanol, phenol, 2-ethyl-1-hexanol, ethanal, naphthalene, 2,6-tert-butyl-4-methyl-phenol (BHT), salicylaldehyde, toluene, hexanal, benzaldehyde, styrene, ethyl benzene, o-, m- and pxylenes, benzene, n-butanol, 1,2-propandiol, and n-butylacetate. Many of the 64 compounds usually included in the European Collaborative Action method of TVOC analysis were below detection limits in the samples analysed. In order to extract maximum amount of information from the data collected, multivariate data projection methods have been employed. The implications of the information extracted on source identification and exposure control are discussed.
Resumo:
The aim of this work was to investigate ultrafine particles (< 0.1 μm) in primary school classrooms, in relation to the classrooms activities. The investigations were conducted in three classrooms during two measuring campaigns, which together encompassed a period of 60 days. Initial investigations showed that under the normal operating conditions of the school there were many occasions in all three classrooms where indoor particle concentrations increased significantly compared to outdoor levels. By far the highest increases in the classroom resulted from art activities (painting, gluing and drawing), at times reaching over 1.4 x 105 particle cm-3. The indoor particle concentrations exceeded outdoor concentrations by approximately one order of magnitude, with a count median diameter ranging from 20-50 nm. Significant increases also occurred during cleaning activities, when detergents were used. GC-MS analysis conducted on 4 samples randomly selected from about 30 different paints and glues, as well as the detergent used in the school, showed that d-limonene was one of the main organic compounds of the detergent, however, it was not detected in the samples of the paints and the glue. Controlled experiments showed that this monoterpene, emitted from the detergent, reacted with O3 (at outdoor ambient concentrations ranging from 0.06-0.08ppm) and formed secondary organic aerosols. Further investigations to identify other liquids which may be potential sources of the precursors of secondary organic aerosols, were outside the scope of this project, however, it is expected that the problem identified by this study could be more widely spread, since most primary schools use liquid materials for art classes, and all schools use detergents for cleaning. Further studies are therefore recommended to better understand this phenomenon and also to minimize school children exposure to ultrafine particles from these indoor sources.
Resumo:
Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.
Resumo:
In this paper, we report the device characteristics of ambipolar thin-film transistors (TFTs) based on a diketopyrrolopyrrole-benzothiadiazole copolymer. This polymer semiconductor exhibits the largest comparable electron and hole mobility values in a single organic semiconductor. The key to realizing such high mobility values, which are $0.5&cm}{2}/\hbox{V}̇\hbox{s, is molecular design, i.e., the use of suitable surface treatments of the source/drain contact electrodes and device architectures, particularly top-gate configurations. The subthreshold characteristics of the TFT devices are greatly improved by the use of dual-gate device geometry. We also report the first measurement of the velocity distribution of electron and hole velocities in an ambipolar organic semiconductor.
Resumo:
In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.