10 resultados para Sediment particle analysis
em Queensland University of Technology - ePrints Archive
Resumo:
Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.
Resumo:
Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that ∼104–105 particle projections are required to attain a 3 Å resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present SwarmPS, a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (∼102), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. SwarmPS is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.
Resumo:
The overall aim of this project was to contribute to existing knowledge regarding methods for measuring characteristics of airborne nanoparticles and controlling occupational exposure to airborne nanoparticles, and to gather data on nanoparticle emission and transport in various workplaces. The scope of this study involved investigating the characteristics and behaviour of particles arising from the operation of six nanotechnology processes, subdivided into nine processes for measurement purposes. It did not include the toxicological evaluation of the aerosol and therefore, no direct conclusion was made regarding the health effects of exposure to these particles. Our research included real-time measurement of sub, and supermicrometre particle number and mass concentration, count median diameter, and alveolar deposited surface area using condensation particle counters, an optical particle counter, DustTrak photometer, scanning mobility particle sizer, and nanoparticle surface area monitor, respectively. Off-line particle analysis included scanning and transmission electron microscopy, energy-dispersive x-ray spectrometry, and thermal optical analysis of elemental carbon. Sources of fibrous and non-fibrous particles were included.
Resumo:
One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented single particles are aligned computationally to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-resolution reconstructions is obtaining a large enough representative dataset ($>100,000$ particles). Traditionally particles have been manually picked which is an extremely labour intensive process. The problem is made especially difficult by the low signal-to-noise ratio of the images. This paper describes the development of automatic particle picking software, which has been tested with both negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most of the particles, with few false positives. Further work will involve extending the software to detect differently shaped and oriented particles.
Resumo:
Knowledge of the elements present in house dusts is important in understanding potential health effects on humans. In this study, dust samples collected from 10 houses in south-east Queensland have been analysed by scanning electron microscopy and X-ray microanalysis to measure the inorganic element compositions and to investigate the form of heavy metals in the dusts. The overall analytical results were then used to discriminate between different localities using chemometric techniques. The relative amounts of elements, particularly of Si, Ca, and Fe, varied between size fractions and between different locations for the same size fraction. By analysing individual small particles, many other constituents were identified including Ti, Cr, Mn, Ni, Cu, Zn, Ba, Ag, W, Au, Hg, Pb, Bi, La and Ce. The heavy metals were mostly concentrated in small particles in the smaller size fractions, which allowed detection by particle analysis, though their average concentrations were very low.
Resumo:
This project advances the knowledge of rail wear and crack formation due to rail/wheel contact in Australian heavy-haul railway lines. This comprehensive study utilised numerous techniques including: simulation using a twin-disk test-rig, scanning electron microscope particle analysis and finite element modeling for material failure prediction. Through this work, new material failure models have been developed which may be used to predict the lifetime and reliability of materials undergoing severe contact conditions.
Resumo:
In estuaries and natural water channels, the estimate of velocity and dispersion coefficients is critical to the knowledge of scalar transport and mixing. This estimate is rarely available experimentally at sub-tidal time scale in shallow water channels where high frequency is required to capture its spatio-temporal variation. This study estimates Lagrangian integral scales and autocorrelation curves, which are key parameters for obtaining velocity fluctuations and dispersion coefficients, and their spatio-temporal variability from deployments of Lagrangian drifters sampled at 10 Hz for a 4-hour period. The power spectral densities of the velocities between 0.0001 and 0.8 Hz were well fitted with a slope of 5/3 predicted by Kolmogorov’s similarity hypothesis within the inertial subrange, and were similar to the Eulerian power spectral previously observed within the estuary. The result showed that large velocity fluctuations determine the magnitude of the integral time scale, TL. Overlapping of short segments improved the stability of the estimate of TL by taking advantage of the redundant data included in the autocorrelation function. The integral time scales were about 20 s and varied by up to a factor of 8. These results are essential inputs for spatial binning of velocities, Lagrangian stochastic modelling and single particle analysis of the tidal estuary.
Resumo:
Compressed natural gas (CNG) engines are thought to be less harmful to the environment than conventional diesel engines, especially in terms of particle emissions. Although, this is true with respect to particulate matter (PM) emissions, results of particle number (PN) emission comparisons have been inconclusive. In this study, results of on-road and dynamometer studies of buses were used to derive several important conclusions. We show that, although PN emissions from CNG buses are significantly lower than from diesel buses at low engine power, they become comparable at high power. For diesel buses, PN emissions are not significantly different between acceleration and operation at steady maximum power. However, the corresponding PN emissions from CNG buses when accelerating are an order of magnitude greater than when operating at steady maximum power. During acceleration under heavy load, PN emissions from CNG buses are an order of magnitude higher than from diesel buses. The particles emitted from CNG buses are too small to contribute to PM10 emissions or contribute to a reduction of visibility, and may consist of semivolatile nanoparticles.
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.