336 resultados para Security protocols

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose two public-key schemes to achieve “deniable authentication” for the Internet Key Exchange (IKE). Our protocols can be implemented using different concrete mechanisms and we discuss different options; in particular we suggest solutions based on elliptic curve pairings. The protocol designs use the modular construction method of Canetti and Krawczyk which provides the basis for a proof of security. Our schemes can, in some situations, be more efficient than existing IKE protocols as well as having stronger deniability properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Even though security protocols are designed to make computer communication secure, it is widely known that there is potential for security breakdowns at the human machine interface. This paper reports on a diary study conducted in order to investigate what people identify as security decisions that they make while using the web. The study aimed to uncover how security is perceived in the individual's context of use. From this data, themes were drawn, with a focus on addressing security goals such as confidentiality and authentication. This study is the first study investigating users' web usage focusing on their self-documented perceptions of security and the security choices they made in their own environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Even though web security protocols are designed to make computer communication secure, it is widely known that there is potential for security breakdowns at the human-machine interface. This paper examines findings from a qualitative study investigating the identification of security decisions used on the web. The study was designed to uncover how security is perceived in an individual user's context. Study participants were tertiary qualified individuals, with a focus on HCI designers, security professionals and the general population. The study identifies that security frameworks for the web are inadequate from an interaction perspective, with even tertiary qualified users having a poor or partial understanding of security, of which they themselves are acutely aware. The result is that individuals feel they must protect themselves on the web. The findings contribute a significant mapping of the ways in which individuals reason and act to protect themselves on the web. We use these findings to highlight the need to design for trust at three levels, and the need to ensure that HCI design does not impact on the users' main identified protection mechanism: separation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Security protocols are designed in order to provide security properties (goals). They achieve their goals using cryptographic primitives such as key agreement or hash functions. Security analysis tools are used in order to verify whether a security protocol achieves its goals or not. The analysed property by specific purpose tools are predefined properties such as secrecy (confidentiality), authentication or non-repudiation. There are security goals that are defined by the user in systems with security requirements. Analysis of these properties is possible with general purpose analysis tools such as coloured petri nets (CPN). This research analyses two security properties that are defined in a protocol that is based on trusted platform module (TPM). The analysed protocol is proposed by Delaune to use TPM capabilities and secrets in order to open only one secret from two submitted secrets to a recipient

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Secure Shell (SSH) protocol is widely used to provide secure remote access to servers, making it among the most important security protocols on the Internet. We show that the signed-Diffie--Hellman SSH ciphersuites of the SSH protocol are secure: each is a secure authenticated and confidential channel establishment (ACCE) protocol, the same security definition now used to describe the security of Transport Layer Security (TLS) ciphersuites. While the ACCE definition suffices to describe the security of individual ciphersuites, it does not cover the case where parties use the same long-term key with many different ciphersuites: it is common in practice for the server to use the same signing key with both finite field and elliptic curve Diffie--Hellman, for example. While TLS is vulnerable to attack in this case, we show that SSH is secure even when the same signing key is used across multiple ciphersuites. We introduce a new generic multi-ciphersuite composition framework to achieve this result in a black-box way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a digital world, users’ Personally Identifiable Information (PII) is normally managed with a system called an Identity Management System (IMS). There are many types of IMSs. There are situations when two or more IMSs need to communicate with each other (such as when a service provider needs to obtain some identity information about a user from a trusted identity provider). There could be interoperability issues when communicating parties use different types of IMS. To facilitate interoperability between different IMSs, an Identity Meta System (IMetS) is normally used. An IMetS can, at least theoretically, join various types of IMSs to make them interoperable and give users the illusion that they are interacting with just one IMS. However, due to the complexity of an IMS, attempting to join various types of IMSs is a technically challenging task, let alone assessing how well an IMetS manages to integrate these IMSs. The first contribution of this thesis is the development of a generic IMS model called the Layered Identity Infrastructure Model (LIIM). Using this model, we develop a set of properties that an ideal IMetS should provide. This idealized form is then used as a benchmark to evaluate existing IMetSs. Different types of IMS provide varying levels of privacy protection support. Unfortunately, as observed by Jøsang et al (2007), there is insufficient privacy protection in many of the existing IMSs. In this thesis, we study and extend a type of privacy enhancing technology known as an Anonymous Credential System (ACS). In particular, we extend the ACS which is built on the cryptographic primitives proposed by Camenisch, Lysyanskaya, and Shoup. We call this system the Camenisch, Lysyanskaya, Shoup - Anonymous Credential System (CLS-ACS). The goal of CLS-ACS is to let users be as anonymous as possible. Unfortunately, CLS-ACS has problems, including (1) the concentration of power to a single entity - known as the Anonymity Revocation Manager (ARM) - who, if malicious, can trivially reveal a user’s PII (resulting in an illegal revocation of the user’s anonymity), and (2) poor performance due to the resource-intensive cryptographic operations required. The second and third contributions of this thesis are the proposal of two protocols that reduce the trust dependencies on the ARM during users’ anonymity revocation. Both protocols distribute trust from the ARM to a set of n referees (n > 1), resulting in a significant reduction of the probability of an anonymity revocation being performed illegally. The first protocol, called the User Centric Anonymity Revocation Protocol (UCARP), allows a user’s anonymity to be revoked in a user-centric manner (that is, the user is aware that his/her anonymity is about to be revoked). The second protocol, called the Anonymity Revocation Protocol with Re-encryption (ARPR), allows a user’s anonymity to be revoked by a service provider in an accountable manner (that is, there is a clear mechanism to determine which entity who can eventually learn - and possibly misuse - the identity of the user). The fourth contribution of this thesis is the proposal of a protocol called the Private Information Escrow bound to Multiple Conditions Protocol (PIEMCP). This protocol is designed to address the performance issue of CLS-ACS by applying the CLS-ACS in a federated single sign-on (FSSO) environment. Our analysis shows that PIEMCP can both reduce the amount of expensive modular exponentiation operations required and lower the risk of illegal revocation of users’ anonymity. Finally, the protocols proposed in this thesis are complex and need to be formally evaluated to ensure that their required security properties are satisfied. In this thesis, we use Coloured Petri nets (CPNs) and its corresponding state space analysis techniques. All of the protocols proposed in this thesis have been formally modeled and verified using these formal techniques. Therefore, the fifth contribution of this thesis is a demonstration of the applicability of CPN and its corresponding analysis techniques in modeling and verifying privacy enhancing protocols. To our knowledge, this is the first time that CPN has been comprehensively applied to model and verify privacy enhancing protocols. From our experience, we also propose several CPN modeling approaches, including complex cryptographic primitives (such as zero-knowledge proof protocol) modeling, attack parameterization, and others. The proposed approaches can be applied to other security protocols, not just privacy enhancing protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Wireless Sensor Network (WSN) is a set of sensors that are integrated with a physical environment. These sensors are small in size, and capable of sensing physical phenomena and processing them. They communicate in a multihop manner, due to a short radio range, to form an Ad Hoc network capable of reporting network activities to a data collection sink. Recent advances in WSNs have led to several new promising applications, including habitat monitoring, military target tracking, natural disaster relief, and health monitoring. The current version of sensor node, such as MICA2, uses a 16 bit, 8 MHz Texas Instruments MSP430 micro-controller with only 10 KB RAM, 128 KB program space, 512 KB external ash memory to store measurement data, and is powered by two AA batteries. Due to these unique specifications and a lack of tamper-resistant hardware, devising security protocols for WSNs is complex. Previous studies show that data transmission consumes much more energy than computation. Data aggregation can greatly help to reduce this consumption by eliminating redundant data. However, aggregators are under the threat of various types of attacks. Among them, node compromise is usually considered as one of the most challenging for the security of WSNs. In a node compromise attack, an adversary physically tampers with a node in order to extract the cryptographic secrets. This attack can be very harmful depending on the security architecture of the network. For example, when an aggregator node is compromised, it is easy for the adversary to change the aggregation result and inject false data into the WSN. The contributions of this thesis to the area of secure data aggregation are manifold. We firstly define the security for data aggregation in WSNs. In contrast with existing secure data aggregation definitions, the proposed definition covers the unique characteristics that WSNs have. Secondly, we analyze the relationship between security services and adversarial models considered in existing secure data aggregation in order to provide a general framework of required security services. Thirdly, we analyze existing cryptographic-based and reputationbased secure data aggregation schemes. This analysis covers security services provided by these schemes and their robustness against attacks. Fourthly, we propose a robust reputationbased secure data aggregation scheme for WSNs. This scheme minimizes the use of heavy cryptographic mechanisms. The security advantages provided by this scheme are realized by integrating aggregation functionalities with: (i) a reputation system, (ii) an estimation theory, and (iii) a change detection mechanism. We have shown that this addition helps defend against most of the security attacks discussed in this thesis, including the On-Off attack. Finally, we propose a secure key management scheme in order to distribute essential pairwise and group keys among the sensor nodes. The design idea of the proposed scheme is the combination between Lamport's reverse hash chain as well as the usual hash chain to provide both past and future key secrecy. The proposal avoids the delivery of the whole value of a new group key for group key update; instead only the half of the value is transmitted from the network manager to the sensor nodes. This way, the compromise of a pairwise key alone does not lead to the compromise of the group key. The new pairwise key in our scheme is determined by Diffie-Hellman based key agreement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyzing security protocols is an ongoing research in the last years. Different types of tools are developed to make the analysis process more precise, fast and easy. These tools consider security protocols as black boxes that can not easily be composed. It is difficult or impossible to do a low-level analysis or combine different tools with each other using these tools. This research uses Coloured Petri Nets (CPN) to analyze OSAP trusted computing protocol. The OSAP protocol is modeled in different levels and it is analyzed using state space method. The produced model can be combined with other trusted computing protocols in future works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Privacy has become one of the main impediments for e-health in its advancement to providing better services to its consumers. Even though many security protocols are being developed to protect information from being compromised, privacy is still a major issue in healthcare where privacy protection is very important. When consumers are confident that their sensitive information is safe from being compromised, their trust in these services will be higher and would lead to better adoption of these systems. In this paper we propose a solution to the problem of patient privacy in e-health through an information accountability framework could enhance consumer trust in e-health services and would lead to the success of e-health services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medical industries have brought Information Technology (IT) in their systems for both patients and medical staffs due to the numerous benefits of IT we experience at presently. Moreover, the Mobile healthcare (M-health) system has been developed as the first step of Ubiquitous Health Environment (UHE). With the mobility and multi-functions, M-health system will be able to provide more efficient and various services for both doctors and patients. Due to the invisible feature of mobile signals, hackers have easier access to hospital networks than wired network systems. This may result in several security incidents unless security protocols are well implemented. In this paper, user authentication and authorization procedures will applied as a featured component at each level of M-health systems inthe hospital environment. Accordingly, M-health system in the hospital will meet the optimal requirements as a countermeasure to its vulnerabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nth-Dimensional Truncated Polynomial Ring (NTRU) is a lattice-based public-key cryptosystem that offers encryption and digital signature solutions. It was designed by Silverman, Hoffstein and Pipher. The NTRU cryptosystem was patented by NTRU Cryptosystems Inc. (which was later acquired by Security Innovations) and available as IEEE 1363.1 and X9.98 standards. NTRU is resistant to attacks based on Quantum computing, to which the standard RSA and ECC public-key cryptosystems are vulnerable to. In addition, NTRU has higher performance advantages over these cryptosystems. Considering this importance of NTRU, it is highly recommended to adopt NTRU as part of a cipher suite along with widely used cryptosystems for internet security protocols and applications. In this paper, we present our analytical study on the implementation of NTRU encryption scheme which serves as a guideline for security practitioners who are novice to lattice-based cryptography or even cryptography. In particular, we show some non-trivial issues that should be considered towards a secure and efficient NTRU implementation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whether by using electronic banking, by using credit cards, or by synchronising a mobile telephone via Bluetooth to an in-car system, humans are a critical part in many cryptographic protocols daily. We reduced the gap that exists between the theory and the reality of the security of these cryptographic protocols involving humans, by creating tools and techniques for proofs and implementations of human-followable security. After three human research studies, we present a model for capturing human recognition; we provide a tool for generating values called Computer-HUman Recognisable Nonces (CHURNs); and we provide a model for capturing human perceptible freshness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research introduces a general methodology in order to create a Coloured Petri Net (CPN) model of a security protocol. Then standard or user-defined security properties of the created CPN model are identified. After adding an attacker model to the protocol model, the security property is verified using state space method. This approach is applied to analyse a number of trusted computing protocols. The results show the applicability of proposed method to analyse both standard and user-defined properties.