3 resultados para Sao Paulo Continental Shelf

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moreton Island and several other large siliceous sand dune islands and mainland barrier deposits in SE Queensland represent the distal, onshore component of an extensive Quaternary continental shelf sediment system. This sediment has been transported up to 1000 km along the coast and shelf of SE Australia over multiple glacioeustatic sea-level cycles. Stratigraphic relationships and a preliminary Optically Stimulated Luminance (OSL) chronology for Moreton Island indicate a middle Pleistocene age for the large majority of the deposit. Dune units exposed in the centre of the island and on the east coast have OSL ages that indicate deposition occurred between approximately 540 ka and 350 ka BP, and at around 96±10 ka BP. Much of the southern half of the island has a veneer of much younger sediment, with OSL ages of 0.90±0.11 ka, 1.28±0.16 ka, 5.75±0.53 ka and <0.45 ka BP. The younger deposits were partially derived from the reworking of the upper leached zone of the much older dunes. A large parabolic dune at the northern end of the island, OSL age of 9.90±1.0 ka BP, and palaeosol exposures that extend below present sea level suggest the Pleistocene dunes were sourced from shorelines positioned several to tens of metres lower than, and up to few kilometres seaward of the present shoreline. Given the lower gradient of the inner shelf a few km seaward of the island, it seems likely that periods of intermediate sea level (e.g. ~20 m below present) produced strongly positive onshore sediment budgets and the mobilisation of dunes inland to form much of what now comprises Moreton Island. The new OSL ages and comprehensive OSL chronology for the Cooloola deposit, 100 km north of Moreton Island, indicate that the bulk of the coastal dune deposits in SE Queensland were emplaced between approximately 540 ka BP and prior to the Last Interglacial. This chronostratigraphic information improves our fundamental understanding of long-term sediment transport and accumulation on large-scale continental shelf sediment systems.