465 resultados para Sampling time
em Queensland University of Technology - ePrints Archive
Resumo:
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.
Resumo:
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.
Resumo:
The two adjacent genes of coat protein 1 and 2 of rice tungro spherical virus (RTSV) were amplified from total RNA extracts of serologically indistinguishable field isolates from the Philippines and Indonesia, using reverse transcriptase polymerase chain reaction (RT-PCR). Digestion with HindIII and BstYI restriction endonucleases differentiated the amplified DNA products into eight distinct coat protein genotypes. These genotypes were then used as indicators of virus diversity in the field. Inter- and intra-site diversities were determined over three cropping seasons. At each of the sites surveyed, one or two main genotypes prevailed together with other related minor or mixed genotypes that did not replace the main genotype over the sampling time. The cluster of genotypes found at the Philippines sites was significantly different from the one at the Indonesia sites, suggesting geographic isolation for virus populations. Phylogenetic studies based on the nucleotide sequences of 38 selected isolates confirm the spatial distribution of RTSV virus populations but show that gene flow may occur between populations. Under the present conditions, rice varieties do not seem to exert selective pressure on the virus populations. Based on the selective constraints in the coat protein amino acid sequences and the virus genetic composition per site, a negative selection model followed by random-sampling events due to vector transmissions is proposed to explain the inter-site diversity observed
Resumo:
The genetic structure of rice tungro bacilliform virus (RTBV) populations within and between growing sites was analyzed in a collection of natural field isolates from different rice varieties grown in eight tungro-endemic sites of the Philippines. Total DNA extracts from 345 isolates were digested with EcoRV restriction enzyme and hybridized with a full-length probe of RTBV, a procedure shown in preliminary experiments capable of revealing high levels of polymorphism in RTBV field isolates. In the total population, 17 distinct EcoRV-based genome profiles (genotypes) were identified and used as indicators for virus diversity. Distinct sets of genotypes occurred in Isabela and North Cotabato provinces suggesting a geographic isolation of virus populations. However, among the sites in each province, there were few significant differences in the genotype compositions of virus populations. The number of genotypes detected at a site varied from two to nine with a few genotypes dominating. In general the isolates at a site persisted from season to season indicating a genetic stability for the local virus population. Over the sampling time, IRRI rice varieties, which have green leafhopper resistance genes, supported similar virus populations to those supported by other varieties, indicating that the variety of the host exerted no apparent selection pressures. Insect transmission experiments on selected RTBV field isolates showed that dramatic shifts in genotype and phenotype distributions can occur in response to host /environmental shifts.
Resumo:
In this study, a non-linear excitation controller using inverse filtering is proposed to damp inter-area oscillations. The proposed controller is based on determining generator flux value for the next sampling time which is obtained by maximising reduction rate of kinetic energy of the system after the fault. The desired flux for the next time interval is obtained using wide-area measurements and the equivalent area rotor angles and velocities are predicted using a non-linear Kalman filter. A supplementary control input for the excitation system, using inverse filtering approach, to track the desired flux is implemented. The inverse filtering approach ensures that the non-linearity introduced because of saturation is well compensated. The efficacy of the proposed controller with and without communication time delay is evaluated on different IEEE benchmark systems including Kundur's two area, Western System Coordinating Council three-area and 16-machine, 68-bus test systems.
Rainfall variability drives interannual variation in N2O emissions from a humid, subtropical pasture
Resumo:
Variations in interannual rainfall totals can lead to large uncertainties in annual N2O emission budget estimates from short term field studies. The interannual variation in nitrous oxide (N2O) emissions from a subtropical pasture in Queensland, Australia, was examined using continuous measurements of automated chambers over 2 consecutive years. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than soil water content. Over 48% of the total N2O emitted was lost in just 16% of measurement days. Interannual variation in annual N2O estimates was high, with cumulative emissions increasing with decreasing rainfall. Cumulative emissions averaged 1826.7 ± 199.9 g N2O-N ha−1 yr−1 over the two year period, though emissions from 2008 (2148 ± 273 g N2O-N ha−1 yr−1) were 42% higher than 2007 (1504 ± 126 g N2O-N ha−1 yr−1). This increase in annual emissions coincided with almost half of the summer precipitation from 2007 to 2008. Emissions dynamics were chiefly driven by the distribution and size of rain events which varied on a seasonal and annual basis. Sampling frequency effects on cumulative N2O flux estimation were assessed using a jackknife technique to inform future manual sampling campaigns. Test subsets of the daily measured data were generated for the pasture and two adjacent land-uses (rainforest and lychee orchard) by selecting measured flux values at regular time intervals ranging from 1 to 30 days. Errors associated with weekly sampling were up to 34% of the sub-daily mean and were highly biased towards overestimation if strategically sampled following rain events. Sampling time of day also played a critical role. Morning sampling best represented the 24 hour mean in the pasture, whereas sampling at noon proved the most accurate in the shaded rainforest and lychee orchard.
Resumo:
The bentiromide test was evaluated using plasma p-aminobenzoic acid as an indirect test of pancreatic insufficiency in young children between 2 months and 4 years of age. To determine the optimal test method, the following were examined: (a) the best dose of bentiromide (15 mg/kg or 30 mg/kg); (b) the optimal sampling time for plasma p-aminobenzoic acid, and; (c) the effect of coadministration of a liquid meal. Sixty-nine children (1.6 ± 1.0 years) were studied, including 34 controls with normal fat absorption and 35 patients (34 with cystic fibrosis) with fat maldigestion due to pancreatic insufficiency. Control and pancreatic insufficient subjects were studied in three age-matched groups: (a) low-dose bentiromide (15 mg/kg) with clear fluids; (b) high-dose bentiromide (30 mg/kg) with clear fluids, and; (c) high-dose bentiromide with a liquid meal. Plasma p-aminobenzoic acid was determined at 0, 30, 60, and 90 minutes then hourly for 6 hours. The dose effect of bentiromide with clear liquids was evaluated. High-dose bentiromide best discriminated control and pancreatic insufficient subjects, due to a higher peak plasma p-aminobenzoic acid level in controls, but poor sensitivity and specificity remained. High-dose bentiromide with a liquid meal produced a delayed increase in plasma p-aminobenzoic acid in the control subjects probably caused by retarded gastric emptying. However, in the pancreatic insufficient subjects, use of a liquid meal resulted in significantly lower plasma p-aminobenzoic acid levels at all time points; plasma p-aminobenzoic acid at 2 and 3 hours completely discriminated between control and pancreatic insufficient patients. Evaluation of the data by area under the time-concentration curve failed to improve test results. In conclusion, the bentiromide test is a simple, clinically useful means of detecting pancreatic insufficiency in young children, but a higher dose administered with a liquid meal is recommended.
Resumo:
This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.
Comparison of emission rate values for odour and odorous chemicals derived from two sampling devices
Resumo:
Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device – either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m-2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1. These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.
Resumo:
Bag sampling techniques can be used to temporarily store an aerosol and therefore provide sufficient time to utilize sensitive but slow instrumental techniques for recording detailed particle size distributions. Laboratory based assessment of the method were conducted to examine size dependant deposition loss coefficients for aerosols held in VelostatTM bags conforming to a horizontal cylindrical geometry. Deposition losses of NaCl particles in the range of 10 nm to 160 nm were analysed in relation to the bag size, storage time, and sampling flow rate. Results of this study suggest that the bag sampling method is most useful for moderately short sampling periods of about 5 minutes.
Resumo:
The broad objective of the study was to better understand anxiety among adolescents in Kolkata city, India. Specifically, the study compared anxiety across gender, school type, socio-economic background and mothers’ employment status. The study also examined adolescents’ perceptions of quality time with their parents. A group of 460 adolescents (220 boys and 240 girls), aged 13-17 years were recruited to participate in the study via a multi-stage sampling technique. The data were collected using a self-report semi-structured questionnaire and a standardized psychological test, the State-Trait Anxiety Inventory. Results show that anxiety was prevalent in the sample with 20.1% of boys and 17.9% of girls found to be suffering from high anxiety. More boys were anxious than girls (p<0.01). Adolescents from Bengali medium schools were more anxious than adolescents from English medium schools (p<0.01). Adolescents belonging to the middle class (middle socio-economic group) suffered more anxiety than those from both high and low socio-economic groups (p<0.01). Adolescents with working mothers were found to be more anxious (p<0.01). Results also show that a substantial proportion of the adolescents perceived they did not receive quality time from fathers (32.1%) and mothers (21.3%). A large number of them also did not feel comfortable to share their personal issues with their parents (60.0% for fathers and 40.0% for mothers).
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Aim: This paper is a report of a study of variations in the pattern of nurse practitioner work in a range of service fields and geographical locations, across direct patient care, indirect patient care and service-related activities. Background. The nurse practitioner role has been implemented internationally as a service reform model to improve the access and timeliness of health care. There is a substantial body of research into the nurse practitioner role and service outcomes, but scant information on the pattern of nurse practitioner work and how this is influenced by different service models. --------- Methods: We used work sampling methods. Data were collected between July 2008 and January 2009. Observations were recorded from a random sample of 30 nurse practitioners at 10-minute intervals in 2-hour blocks randomly generated to cover two weeks of work time from a sampling frame of six weeks. --------- Results: A total of 12,189 individual observations were conducted with nurse practitioners across Australia. Thirty individual activities were identified as describing nurse practitioner work, and these were distributed across three categories. Direct care accounted for 36.1% of how nurse practitioners spend their time, indirect care accounted for 32.2% and service-related activities made up 31.9%. --------- Conclusion. These findings provide useful baseline data for evaluation of nurse practitioner positions and the service effect of these positions. However, the study also raises questions about the best use of nurse practitioner time and the influences of barriers to and facilitators of this model of service innovation.
Resumo:
Ocean processes are dynamic, complex, and occur on multiple spatial and temporal scales. To obtain a synoptic view of such processes, ocean scientists collect data over long time periods. Historically, measurements were continually provided by fixed sensors, e.g., moorings, or gathered from ships. Recently, an increase in the utilization of autonomous underwater vehicles has enabled a more dynamic data acquisition approach. However, we still do not utilize the full capabilities of these vehicles. Here we present algorithms that produce persistent monitoring missions for underwater vehicles by balancing path following accuracy and sampling resolution for a given region of interest, which addresses a pressing need among ocean scientists to efficiently and effectively collect high-value data. More specifically, this paper proposes a path planning algorithm and a speed control algorithm for underwater gliders, which together give informative trajectories for the glider to persistently monitor a patch of ocean. We optimize a cost function that blends two competing factors: maximize the information value along the path, while minimizing deviation from the planned path due to ocean currents. Speed is controlled along the planned path by adjusting the pitch angle of the underwater glider, so that higher resolution samples are collected in areas of higher information value. The resulting paths are closed circuits that can be repeatedly traversed to collect long-term ocean data in dynamic environments. The algorithms were tested during sea trials on an underwater glider operating off the coast of southern California, as well as in Monterey Bay, California. The experimental results show significant improvements in data resolution and path reliability compared to previously executed sampling paths used in the respective regions.