2 resultados para Salas cirúrgicas

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the challenges of transfer of training back to the workplace for programme and project managers who are being groomed for the leadership of large and complex projects. The paper draws on the experience of the development and delivery of Queensland University of Technology (QUT) education programs: an Executive Masters of Complex Project Management and a series of Continuing Professional Development (CPD) events for an Australian government agency, Defence Materiel Organisation (DMO). Drawing on notions of ‘far transfer’ (Laker 1990; Noe, 1986) and ‘transfer climate’ (Kozlowski & Salas, 1993; Yamnill & McLean, 2001), the paper describes the steps undertaken to achieve a design that ensures that programme and project leadership skills developed through these corporate education programs become successfully embedded back in the organisation. Further, the paper reports on a small qualitative study where the programme success was evaluated by the organisational sponsor, senior leaders and program participants. Nine interviews were conducted and analysed to identify the success of far transfer and transfer climate four months after the return of program participants from cohort 1 2008 to the workplace.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.