9 resultados para SULFIDES

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poorly characterized phases (PCP's) may constitute up to 30 volume percent of some C2M carbonaceous chondrite matrices [1] and are an important key to an understanding of matrix evolution. PCPs are usually fine-grained (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structure and chemistry of poorly characterized phases (PCP). We suggest here that approximately 10 angstrom PCP, a dominant matrix variety, has a structure equivalent to iron-rich tochilinite [6Fe (sub 0.9) S 5(Fe, Mg) (OH) (sub 2) ] which consists of coherently interstratified mackinawite and brucite sheets. approximately 17 angstrom PCP, previously described as an SBB-type mixed-layer structure, is a commensurate intergrowth of serpentine and tochilinite layers. A wide range of cation substitutions is possible within both tochilinite and serpentine-tochilinite structural types. Various forms of PCP observed in carbonaceous chondrites are intergrowths of tochilinite, serpentine, serpentine-tochilinite and/or valleriite-type minerals.--Modified journal abstract.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure phase Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized via polyacrylic acid (PAA) assisted one-pot hydrothermal route. The morphology, crystal structure, composition and optical properties as well as the photoactivity of the as-synthesized CZTS nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrometer, UV-visible absorption spectroscopy and photoelectrochemical measurement. The influence of various synthetic conditions, such as the reaction temperature, reaction duration and the amount of PAA in the precursor solution on the formation of CZTS compound was systematically investigated. The results have shown that the crystal phase, morphology and particle size of CZTS can be tailored by controlling the reaction conditions. The formation mechanism of CZTS in the hydrothermal reaction has been proposed based on the investigation of time-dependent phase evolution of CZTS which showed that metal sulfides (e.g., Cu2S, SnS2 and ZnS) were formed firstly during the hydrothermal reaction before forming CZTS compound through nucleation. The band gap of the as-synthesized CZTS nanoparticles is 1.49 eV. The thin film electrode based on the synthesized CZTS nanoparticles in a three-electrode photoelectrochemical cell generated pronounced photocurrent under illumination provided by a red light-emitting diode (LED, 627 nm), indicating the photoactivity of the semiconductor material.