38 resultados para SPONTANEOUS RECURRENT SEIZURES
em Queensland University of Technology - ePrints Archive
Resumo:
BACKGROUND - High-density lipoprotein (HDL) protects against arterial atherothrombosis, but it is unknown whether it protects against recurrent venous thromboembolism. METHODS AND RESULTS - We studied 772 patients after a first spontaneous venous thromboembolism (average follow-up 48 months) and recorded the end point of symptomatic recurrent venous thromboembolism, which developed in 100 of the 772 patients. The relationship between plasma lipoprotein parameters and recurrence was evaluated. Plasma apolipoproteins AI and B were measured by immunoassays for all subjects. Compared with those without recurrence, patients with recurrence had lower mean (±SD) levels of apolipoprotein AI (1.12±0.22 versus 1.23±0.27 mg/mL, P<0.001) but similar apolipoprotein B levels. The relative risk of recurrence was 0.87 (95% CI, 0.80 to 0.94) for each increase of 0.1 mg/mL in plasma apolipoprotein AI. Compared with patients with apolipoprotein AI levels in the lowest tertile (<1.07 mg/mL), the relative risk of recurrence was 0.46 (95% CI, 0.27 to 0.77) for the highest-tertile patients (apolipoprotein AI >1.30 mg/mL) and 0.78 (95% CI, 0.50 to 1.22) for midtertile patients (apolipoprotein AI of 1.07 to 1.30 mg/mL). Using nuclear magnetic resonance, we determined the levels of 10 major lipoprotein subclasses and HDL cholesterol for 71 patients with recurrence and 142 matched patients without recurrence. We found a strong trend for association between recurrence and low levels of HDL particles and HDL cholesterol. CONCLUSIONS - Patients with high levels of apolipoprotein AI and HDL have a decreased risk of recurrent venous thromboembolism. © 2007 American Heart Association, Inc.
Resumo:
Relationships between self-reported retrospective falls and cognitive measures (executive function, reaction time, processing speed, working memory, visual attention) were examined in a population based sample of older adults (n = 658). Two of the choice reaction time tests involved inhibiting responses to either targets of a specific color or location with hand and foot responses. Potentially confounding demographic variables, medical conditions and postural sway were controlled for in logistic regression models, excluding participants with possible cognitive impairment. A factor analysis of cognitive measures extracted factors measuring reaction time, accuracy and inhibition, and visual search. Single fallers did not differ from non-fallers in terms of health, sway or cognitive function, except that they performed worse on accuracy and inhibition. In contrast, recurrent fallers performed worse than non-fallers on all measures. Results suggest that occasional falls in late life may be associated with subtle age-related changes in the pre-frontal cortex leading to failures of executive control, whereas recurrent falling may result from more advanced brain ageing that is associated with generalized cognitive decline.
Resumo:
The missing-item format and interrupted behaviour chain strategy have been used to increase spontaneous requests among children with developmental disabilities, but their relative effectiveness has not been compared. The present study compared the extent to which each strategy evoked spontaneous requests and challenging behaviour in three children with autism. Sessions where a needed item was withheld (missing-item format) were compared to sessions involving the removal of a needed item (interrupted behaviour chain strategy). Comparisons were conducted across three activates in an alternating treatments design. Both strategies evoked spontaneous requests with no significant difference in effectiveness. Few differences were obtained in the amount of challenging behaviour evoked but the two conditions, although a moderate inverse relationship between spontaneous requesting and challenging behaviour was observed. The results suggest that theses two procedures yield similar outcomes. Concurrent use of both strategies may enable teachers to create a greater number of opportunities for requesting.
Resumo:
Purpose: To investigate speed regulation during overground running on undulating terrain. Methods: Following an initial laboratory session to calculate physiological thresholds, eight experienced runners completed a spontaneously paced time trial over 3 laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Results: Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. 89% of group level speed was predicted using a modified gradient factor. Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Conclusions: Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain.
Resumo:
In a critical review of the literature to assess the efficacy of monotherapy and subsequent combinant anticonvulsant therapy in the treatment of neonatal seizures, four studies were examined; three randomised control trials and one retrospective cohort study. Each study used phenobarbital for monotherapy with doses reaching a maximum of 40mg/kg. Anticonvulsant drugs used in conjunction with phenobarbitone for combinant therapy included midazolam, clonazepam, lorazepam, phenytoin and lignocaine. Each study used an electroencephalograph for seizure diagnosis and neonatal monitoring when determining therapy efficacy and final outcome assessments. Collectively the studies suggest neither monotherapy nor combinant therapy are entirely effective in seizure control. Monotherapy demonstrated a 29% - 50% success rate for complete seizure control whereas combinant therapy administered after the failure of monotherapy demonstrated a success rate of 43% - 100%. When these trials were combined the overall success for monotherapy was 44% (n = 34/78) and for combinant therapy 72% ( n = 56/78). Though the evidence was inconclusive, it would appear that combinant therapy is of greater benefit to infants unresponsive to monotherapy. Further research such as multi-site randomised controlled trials using standardised criteria and data collection are required within this specialised area.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.
Resumo:
Germ-line mutations in CDKN2A have been shown to predispose to cutaneous malignant melanoma. We have identified 2 new melanoma kindreds which carry a duplication of a 24bp repeat present in the 5' region of CDKN2A previously identified in melanoma families from Australia and the United States. This mutation has now been reported in 5 melanoma families from 3 continents: Europe, North America, and Australasia. The M53I mutation in exon 2 of CDKN2A has also been documented in 5 melanoma families from Australia and North America. The aim of this study was to determine whether the occurrence of the mutations in these families from geographically diverse populations represented mutation hotspots within CDKN2A or were due to common ancestors. Haplotypes of 11 microsatellite markers flanking CDKN2A were constructed in 5 families carrying the M53I mutation and 5 families carrying the 24bp duplication. There were some differences in the segregating haplotypes due primarily to recombinations and mutations within the short tandem-repeat markers; however, the data provide evidence to indicate that there were at least 3 independent 24bp duplication events and possibly only 1 original M53I mutation. This is the first study to date which indicates common founders in melanoma families from different continents.
Resumo:
Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.
Resumo:
At St Thomas' Hospital, we have developed a computer program on a Titan graphics supercomputer to plan the stereotactic implantation of iodine-125 seeds for the palliative treatment of recurrent malignant gliomas. Use of the Gill-Thomas-Cosman relocatable frame allows planning and surgery to be carried out at different hospitals on different days. Stereotactic computed tomography (CT) and positron emission tomography (PET) scans are performed and the images transferred to the planning computer. The head, tumour and frame fiducials are outlined on the relevant images, and a three-dimensional model generated. Structures which could interfere with the surgery or radiotherapy, such as major vessels, shunt tubing etc., can also be outlined and included in the display. Catheter target and entry points are set using a three-dimensional cursor controlled by a set of dials attached to the computer. The program calculates and displays the radiation dose distribution within the target volume for various catheter and seed arrangements. The CT co-ordinates of the fiducial rods are used to convert catheter co-ordinates from CT space to frame space and to calculate the catheter insertion angles and depths. The surgically implanted catheters are after-loaded the next day and the seeds left in place for between 4 and 6 days, giving a nominal dose of 50 Gy to the edge of the target volume. 25 patients have been treated so far.