29 resultados para SP-NOV.
em Queensland University of Technology - ePrints Archive
Resumo:
Antechinus mysticus sp. nov. occurs in coastal Australia, ranging from just north of the Queensland (Qld)/New South Wales (NSW) border to Mackay (mid-east Qld), and is sympatric with A. flavipes (Waterhouse) and A. subtropicus Van Dyck & Crowther in south-east Qld. The new species can be distinguished in the field, having paler feet and tail base than A. flavipes and a greyish head that merges to buff-yellow on the rump and flanks, compared with the more uniform brown head and body of A. subtropicus and A. stuartii Macleay. Features of the dentary can also be used for identification: A. mysticus differs from A. flavipes in having smaller molar teeth, from A. subtropicus in having a larger gap between front and rear palatal vacuities, and from A. stuartii in having a generally broader snout. Here, we present a morphological analysis of the new species in comparison with every member of the genus, including a discussion of genetic structure and broader evolutionary trends, as well as an identification key to species based on dental characters. It seems likely that the known geographic range of A. mysticus will expand as taxonomic focus on the genus is concentrated in south-east Queensland and north-east New South Wales.
Resumo:
Histological analysis of gill samples taken from individuals of Latris lineata reared in aquaculture in Tasmania, Australia, and those sampled from the wild revealed the presence of epitheliocystis-like basophilic inclusions. Subsequent morphological, in situ hybridization, and molecular analyses were performed to confirm the presence of this disease and discovered a Chlamydia-like organism associated with this condition, and the criteria set by Fredericks and Relman's postulates were used to establish disease causation. Three distinct 16S rRNA genotypes were sequenced from 16 fish, and phylogenetic analyses of the nearly full-length 16S rRNA sequences generated for this bacterial agent indicated that they were nearly identical novel members of the order Chlamydiales. This new taxon formed a well-supported clade with "Candidatus Parilichlamydia carangidicola" from the yellowtail kingfish (Seriola lalandi). On the basis of sequence divergence over the 16S rRNA region relative to all other members of the order Chlamydiales, a new genus and species are proposed here for the Chlamydia-like bacterium from L. lineata, i.e., "Candidatus Similichlamydia latridicola" gen. nov., sp. nov.
Resumo:
We describe a new species of dasyurid marsupial within the genus Antechinus that was previously known as a northern outlier of Dusky Antechinus (A. swainsonii). The Black-tailed Antechinus, Antechinus arktos sp. nov., is known only from areas of high altitude and high rainfall on the Tweed Volcano caldera of far south-east Queensland and north-east New South Wales, Australia. Antechinus arktos formerly sheltered under the taxonomic umbrella of A. swainsonii mimetes, the widespread mainland form of Dusky Antechinus. With the benefit of genetic hindsight, some striking morphological differences are herein resolved: A. s. mimetes is more uniformly deep brown-black to grizzled grey-brown from head to rump, with brownish (clove brown—raw umber) hair on the upper surface of the hindfoot and tail, whereas A. arktos is more vibrantly coloured, with a marked change from greyish-brown head to orange-brown rump, fuscous black on the upper surface of the hindfoot and dense, short fur on the evenly black tail. Further, A. arktos has marked orange-brown fur on the upper and lower eyelid, cheek and in front of the ear and very long guard hairs all over the body; these characters are more subtle in A. s. mimetes. There are striking genetic differences between the two species: at mtDNA, A. s. mimetes from north-east New South Wales is 10% divergent to A. arktos from its type locality at Springbrook NP, Queensland. In contrast, the Ebor A. s. mimetes clades closely with conspecifics from ACT and Victoria. A. arktos skulls are strikingly different to all subspecies of A. swainsonii. A. arktos are markedly larger than A. s. mimetes and A. s. swainsonii (Tasmania) for a range of craniodental measures. Antechinus arktos were historically found at a few proximate mountainous sites in south-east Queensland, and have only recently been recorded from or near the type locality. Even there, the species is likely in low abundance. The Black-tailed Antechinus has plausibly been detrimentally affected by climate change in recent decades, and will be at further risk with increasing warming trends.
Resumo:
Antechinus argentus sp. nov. is currently only known from the plateau at the eastern escarpment of Kroombit Tops National Park, about 400km NNW of Brisbane and 60km SSW of Gladstone, south-east Queensland, Australia. Antechinus flavipes (Waterhouse) is also known from Kroombit Tops NP, 4.5km W of the nearest known population of A. argentus; A. mysticus Baker, Mutton and Van Dyck has yet to be found within Kroombit Tops, but is known from museum specimens taken at Bulburin NP, just 40km ESE, as well as extant populations about 400km to both the south-east and north-west of Kroombit NP. A. argentus can be easily distinguished in the field, having an overall silvery/grey appearance with much paler silver feet and drabber deep greyish-olive rump than A. flavipes, which has distinctive yellow-orange toned feet, rump and tail-base; A. argentus fur is also less coarse than that of A. flavipes. A. argentus has a striking silver-grey head, neck and shoulders, with pale, slightly broken eye-rings, which distinguish it from A. mysticus which has a more subtle greyish-brown head, pale buff dabs of eyeliner and more colourful brownish-yellow rump. Features of the dentary can also be used for identification: A. argentus differs from A. flavipes in having smaller molar teeth, as well as a narrower and smaller skull and from A. mysticus in having on average a narrower snout, smaller skull and dentary lengths and smaller posterior palatal vacuities in the skull. A. argentus is strongly divergent genetically (at mtDNA) from both A. flavipes (9.0–11.2%) and A. mysticus (7.2–7.5%), and forms a very strongly supported clade to the exclusion of all other antechinus species, in both mtDNA and combined (mtDNA and nDNA) phylogenies inferred here. We are yet to make detailed surveys in search of A. argentus from forested areas to the immediate east and north of Kroombit Tops. However, A. mysticus has only been found at these sites in low densities in decades past and not at all in several recent trapping expeditions conducted by the authors. With similar habitat types in close geographic proximity, it is plausible that A. argentus may be found outside Kroombit. Nevertheless, it is striking that from a range of surveys conducted at Kroombit Tops in the last 15 years and intensive surveys by the authors in the last 3 years, totalling more than 5 080 trap nights, just 13 A. argentus have been captured from two sites less than 6 km apart. If this is even close to the true geographic extent of the species, it would possess one of the smallest distributions of an Australian mammal species. With several threats identified, we tentatively recommend that A. argentus be listed as Endangered, pending an exhaustive trapping survey of Kroombit and surrounds.
Resumo:
In 2014, the northern outlying population of carnivorous marsupial Dusky Antechinus (Antechinus swainsonii) was nominated a new species, A. arktos. Here, we describe a further new species in the dasyurid A. swainsonii complex, which now contains five taxa. We recognise two distinct species from Tasmania, formerly represented by A. swainsonii swainsonii (Waterhouse); one species (and 2 subspecies) from mainland south-eastern Australia, formerly known as A. swainsonii mimetes (Thomas) and A. swainsonii insulanus Davison; and one species from the Tweed Caldera in mid-eastern Australia, formerly known as A. s. mimetes but recently described as A. arktos Baker, Mutton, Hines and Van Dyck. Primacy of discovery dictates the Tasmanian Dusky Antechinus A. swainsonii (Waterhouse) is nominate; the Mainland Dusky Antechinus taxa, one raised from subspecies within A. swainsonii mimetes (Thomas) is elevated to species (now A. mimetes mimetes) and the other, A. swainsonii insulanus Davison is transferred as a subspecies of A. mimetes (now A. mimetes insulanus); a species from Tasmania, the Tasman Peninsula Dusky Antechinus, is named A. vandycki sp. nov. These taxa are strongly differentiated: geographically (in allopatry), morphologically (in coat colour and craniodental features) and genetically (in mtDNA, 7.5-12.5% between species pairs).
Resumo:
Ediea homevalensis H. Nishida, Kudo, Pigg & Rigby gen. et sp. nov. is proposed for permineralized pollen-bearing structures from the Late Permian Homevale Station locality of the Bowen Basin, Queensland, Australia. The taxon represents unisexual fertile shoots bearing helically arranged leaves on a central axis. The more apical leaves are fertile microsporophylls bearing a pair of multi-branched stalks on their adaxial surfaces that each supports a cluster of terminally borne pollen sacs. Proximal to the fertile leaves there are several rows of sterile scale-like leaves. The pollen sacs (microsporangia) have thickened and dark, striate walls that are typical of the Arberiella type found in most pollen organs presumed to be of glossopterid affinity. An examination of pollen organs at several developmental stages, including those containing in situ pollen of the Protohaploxypinus type, provides the basis for a detailed analysis of these types of structures, which bear similarities to both compression/impression Eretmonia-type glossopterid microsporangiate organs and permineralized Eretmonia macloughlinii from Antarctica. These fossils demonstrate that at least some Late Permian pollen organs were simple microsporophyll-bearing shoot systems and not borne directly on Glossopteris leaves.
Resumo:
The larvae of particular Ogmograptis spp. produce distinctive scribbles on some smooth-barked Eucalyptus spp. which are a common feature on many ornamental and forest trees in Australia. However, although they are conspicuous in the environment the systematics and biology of the genus has been poorly studied. This has been addressed through detailed field and laboratory studies of their biology of three species (O. racemosa Horak sp. nov., O. fraxinoides Horak sp. nov., O. scribula Meyrick), in conjunction with a comprehensive taxonomic revision support by a molecular phylogeny utilising the mitochondrial Cox1 and nuclear 18S genes. In brief, eggs are laid in bark depressions and the first instar larvae bore into the bark to the level where the future cork cambium forms (the phellegen). Early instar larvae bore wide, arcing tracks in this layer before forming a tighter zig-zag shaped pattern. The second last instar turns and bores either closely parallel to the initial mine or doubles its width, along the zig-zag shaped mine. The final instar possesses legs and a spinneret (unlike the earlier instars) and feeds exclusively on callus tissue which forms within the zig-zag shaped mine formed by the previous instar, before emerging from the bark to pupate at the base of the tree. The scars of mines them become visible scribble following the shedding of bark. Sequence data confirm the placement of Ogmograptis within the Bucculatricidae, suggest that the larvae responsible for the ‘ghost scribbles’ (unpigmented, raised scars found on smooth-barked eucalypts) are members of the genus Tritymba, and support the morphology-based species groups proposed for Ogmograptis. The formerly monotypic genus Ogmograptis Meyrick is revised and divided into three species groups. Eleven new species are described: Ogmograptis fraxinoides Horak sp. nov., Ogmograptis racemosa Horak sp. nov. and Ogmograptis pilularis Horak sp. nov. forming the scribula group with Ogmograptis scribula Meyrick; Ogmograptis maxdayi Horak sp. nov., Ogmograptis barloworum Horak sp. nov., Ogmograptis paucidentatus Horak sp. nov., Ogmograptis rodens Horak sp. nov., Ogmograptis bignathifer Horak sp. nov. and Ogmograptis inornatus Horak sp. nov. as the maxdayi group; Ogmograptis bipunctatus Horak sp. nov., Ogmograptis pulcher Horak sp. nov., Ogmograptis triradiata (Turner) comb. nov. and Ogmograptis centrospila (Turner) comb. nov. as the triradiata group. Ogmograptis notosema (Meyrick) cannot be assigned to a species group as the holotype has not been located. Three unique synapomorphies, all derived from immatures, redefine the family Bucculatricidae, uniting Ogmograptis, Tritymba Meyrick (both Australian) and Leucoedemia Scoble & Scholtz (African) with Bucculatrix Zeller, which is the sister group of the southern hemisphere genera. The systematic history of Ogmograptis and the Bucculatricidae is discussed.
Resumo:
Hitherto, the Malaconothridae contained Malaconothrus Berlese, 1904 and Trimalaconothrus Berlese, 1916, defined by the possession of one pre-tarsal claw (monodactyly) or by three claws (tridactyly) respectively. However, monodactyly is a convergent apomorphy within the Oribatida and an unreliable character for a classification. Therefore we undertook a phylogenetic analysis of 102 species as the basis for a taxonomic review of the Malaconothridae. We identified two major clades, equivalent to the genera Tyrphonothrus Knülle, 1957 and Malaconothrus. These genera are redefined. Trimala-conothrus becomes the junior subjective synonym of Malaconothrus. Some 42 species of Trimalaconothrus are recom-bined to Malaconothrus and 15 species to Tyrphonothrus. Homonyms created by the recombinations are rectified. The replacement name M. hammerae nom. nov. is proposed for M. angulatus Hammer, 1958, the junior homonym of M. an-gulatus (Willmann, 1931) and the replacement name M. luxtoni nom. nov. is proposed for M. scutatus Luxton, 1987, the junior homonym of M. scutatus Mihelč ič, 1959. Trimalaconothrus iteratus Subías, 2004 is an unnecessary replacement name and is a junior objective synonym of Malaconothrus longirostrum (Hammer 1966). Malaconothrus praeoccupatus Subías, 2004 is a junior objective synonym of M. machadoi Balogh & Mahunka, 1969. Malaconothrus obsessus (Subías, 2004), an unnecessary replacement name for Trimalaconothrus albulus Hammer 1966 sensu Tseng 1982, becomes an available name for what is in fact a previously-undescribed species of Malaconothrus. We describe four new species of Tyrphonothrus: T. gnammaensis sp. nov. from Western Australia, T. gringai sp. nov. and T. maritimus sp. nov. from New South Wales, and T. taylori sp. nov. from Queensland. We describe six new species of Malaconothrus: M. beecroftensis sp. nov., M. darwini sp. nov. M. gundungurra sp. nov. and M. knuellei sp. nov. from New South Wales, M. jowettae sp. nov. from Norfolk Island, and M. talaitae sp. nov. from Victoria.
Resumo:
Six consecutively hatched cohorts and one cohort of pre-hatch eggs of farmed barramundi (Lates calcarifer) from south Australia were examined for Chlamydia-like organisms associated with epitheliocystis. To identify and characterise the bacteria, 59 gill samples and three pre-hatch egg samples were processed for histology, in situ hybridisation and 16S rRNA amplification, sequencing and comprehensive phylogenetic analysis. Cases of epitheliocystis were observed microscopically and characterised by membrane-enclosed basophilic cysts filled with a granular material that caused hypertrophy of the epithelial cells. In situ hybridisation with a Chlamydiales-specific probe lead to specific labelling of the epitheliocystis inclusions within the gill epithelium. Two distinct but closely related 16S rRNA chlamydial sequences were amplified from gill DNA across the seven cohorts, including from pre-hatch eggs. These genotype sequences were found to be novel, sharing 97.1 - 97.5% similarity to the next closest 16S rRNA sequence, Ca. Similichlamydia latridicola, from Australian striped trumpeter. Comprehensive phylogenetic analysis of these genotype sequences against representative members of the Chlamydiales order and against other epitheliocystis agents revealed these Chlamydia-like organisms to be novel and taxonomically placed them within the recently proposed genus Ca. Similichlamydia. Following Fredricks and Relman's molecular postulates and based on these observations, we propose the epitheliocystis agents of barramundi to be known as "Candidatus Similichlamydia laticola" (sp. nov.).
Resumo:
Barbadocladius n. gen. is erected and described in larval, pupal and adult stages for two species: B. andinus sp. nov. and B. limay sp. nov., from Andean streams. The larva is distinctive by virtue of the very large ventromental 'beard' and the anterior parapods with a 'sleeve' of hooklets in addition to apical pectinate claws. The pupa has hooklets on some tergal and sternal intersegmental membranes. The adult, reported only in teneral specimens has hairy eyes, no antennal apical strong seta, no acrostichals, bare and unmarked wings, cylindrical 4th tarsomere subequal in length to the 5th, pulvilli about half the claw length, and hypopygium with anal point, lacking a virga. Molecular phylogenetic analysis eliminates relationships directly to the Eukiefferiella complex (which also have pupal hooklets), or to the Cricotopus group (adults also with hairy eyes), suggesting instead a sister group relationship to a suite of predominantly austral genera of Orthocladiinae.
Resumo:
The Australian species of the Orthocladiinae genus Cricotopus Wulp (Diptera: Chironomidae) are revised for larval, pupal, adult male and female life stages. Eleven species, ten of which are new, are recognised and keyed, namely Cricotopus acornis Drayson & Cranston sp. nov., Cricotopus albitarsis Hergstrom sp. nov., Cricotopus annuliventris (Skuse), Cricotopus brevicornis Drayson & Cranston sp. nov., Cricotopus conicornis Drayson & Cranston sp. nov., Cricotopus hillmani Drayson & Cranston, sp. nov., Cricotopus howensis Cranston sp. nov., Cricotopus parbicinctus Hergstrom sp. nov., Cricotopus tasmania Drayson & Cranston sp. nov., Cricotopus varicornis Drayson & Cranston sp. nov. and Cricotopus wangi Cranston & Krosch sp. nov. Using data from this study, we consider the wider utility of morphological and molecular diagnostic tools in untangling species diversity in the Chironomidae. Morphological support for distinguishing Cricotopus from Paratrichocladius Santo-Abreu in larval and pupal stages appears lacking for Australian taxa and brief notes are provided concerning this matter.
Resumo:
The genus Austronothrus was previously known from three species recorded only from New Zealand. Austronothrus kinabalu sp. nov. is described from Sabah, Borneo and A. rostralis sp. nov. from Norfolk Island, south-west Pacific. A key to Austronothrus is included. These new species extend the distribution of Austronothrus beyond New Zealand and confirms that the subfamily Crotoniinae is not confined to former Gondwanan landmasses. The distribution pattern of Austronothrus spp., combining Oriental and Gondwanan localities, is indicative of a curved, linear track; consistent with the accretion of island arcs and volcanic terranes around the plate margins of the Pacific Ocean, with older taxa persisting on younger island though localised dispersal within island arc metapopulations. Phylogenetic analysis and an area cladogram are consistent with a broad ancestral distribution of Austronothrus in the Oriental region and on Gondwanan terranes, with subsequent divergence and distribution southward from the Sunda region to New Zealand. This pattern is more complex than might be expected if the New Zealand oribatid fauna was derived from dispersal following re-emergence of land after inundation during the Oligocene (25 mya), as well as if the fauna emanated from endemic, relictual taxa following separation of New Zealand from Gondwana during the Cretaceous (80 mya).
Resumo:
The informal taxon ‘genus Chile’ of Brundin, based solely on pupal exuviae of a podonomine Chironomidae, has remained inadequately known for half a century. New collections reveal life associations, and provide molecular data to hypothesise a precise phylogenetic placement in the austral Podonominae. A densely sampled molecular phylogeny based on two nuclear and one mitochondrial DNA markers shows ‘genus Chile’ to be the sister group to Podonomopsis Brundin, 1966. Within Podonomopsis a clade of South American species is sister to all Australian species. We discuss how to rank such a sister group taxon and treat ‘genus Chile’ as a new subgenus Araucanopsis, subg. nov. with the new species, Podonomopsis (Araucanopsis) avelasse, sp. nov. from Chile and Argentina as genotype of the monotypic subgenus. We describe P. (A.) avelasse in all stages and provide an expanded diagnosis and description of Podonomopsis to include Araucanopsis. A dated biogeographic hypothesis (chronogram) infers the most recent common ancestor (tmcra) of expanded Podonomopsis at 95 million years ago (Mya) (68–122 Mya 95% highest posterior density), ‘core’ Podonomopsis at 83 Mya (58–108) and Australian Podonomopsis at 65 Mya (44–87). All dates are before the South America–Australia geological separation through Antarctica, supporting previous conclusions that the taxon distribution is ‘Gondwanan’ in origin. Podonomopsis, even as expanded here, remains unknown from New Zealand or elsewhere on extant Zealandia.