47 resultados para SMALL-X EVOLUTION
em Queensland University of Technology - ePrints Archive
Resumo:
Introduction The dose to skin surface is an important factor for many radiotherapy treatment techniques. It is known that TPS predicted surface doses can be significantly different from actual ICRP skin doses as defined at 70 lm. A number of methods have been implemented for the accurate determination of surface dose including use of specific dosimeters such as TLDs and radiochromic film as well as Monte Carlo calculations. Stereotactic radiosurgery involves delivering very high doses per treatment fraction using small X-ray fields. To date, there has been limited data on surface doses for these very small field sizes. The purpose of this work is to evaluate surface doses by both measurements and Monte Carlo calculations for very small field sizes. Methods All measurements were performed on a Novalis Tx linear accelerator which has a 6 MV SRS X-ray beam mode which uses a specially thin flattening filter. Beam collimation was achieved by circular cones with apertures that gave field sizes ranging from 4 to 30 mm at the isocentre. The relative surface doses were measured using Gafchromic EBT3 film which has the active layer at a depth similar to the ICRP skin dose depth. Monte Carlo calculations were performed using the BEAMnrc/EGSnrc Monte Carlo codes (V4 r225). The specifications of the linear accelerator, including the collimator, were provided by the manufacturer. Optimisation of the incident X-ray beam was achieved by an iterative adjustment of the energy, spatial distribution and radial spread of the incident electron beam striking the target. The energy cutoff parameters were PCUT = 0.01 MeV and ECUT = 0.700 - MeV. Directional bremsstrahlung splitting was switched on for all BEAMnrc calculations. Relative surface doses were determined in a layer defined in a water phantom of the same thickness and depth as compared to the active later in the film. Results Measured surface doses using the EBT3 film varied between 13 and 16 % for the different cones with an uncertainty of 3 %. Monte Carlo calculated surface doses were in agreement to better than 2 % to the measured doses for all the treatment cones. Discussion and conclusions This work has shown the consistency of surface dose measurements using EBT3 film with Monte Carlo predicted values within the uncertainty of the measurements. As such, EBT3 film is recommended for in vivo surface dose measurements.
Resumo:
This thesis investigated in detail the physics of small X-ray fields used in radiotherapy treatments. Because of this work, the ability to accurately measure dose from these very small X-ray fields has been improved in several ways. These include scientifically quantifying when highly accurate measurements are required by introducing the concept of a very small field, and by the invention of a new detector that responds the same in very small fields as in normal fields.
Resumo:
This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.
Resumo:
Purpose Small field x-ray beam dosimetry is difficult due to a lack of lateral electronic equilibrium, source occlusion, high dose gradients and detector volume averaging. Currently there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods Small field sizes were defined by BrainLAB circular cones (4 – 30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated by Monte Carlo methods using BEAMnrc and correction factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Results For the small fields of 4 to 30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Conclusions We conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.
Resumo:
Viroids and most viral satellites have small, noncoding, and highly structured RNA genomes. How they cause disease symptoms without encoding proteins and why they have characteristic secondary structures are two longstanding questions. Recent studies have shown that both viroids and satellites are capable of inducing RNA silencing, suggesting a possible role of this mechanism in the pathology and evolution of these subviral RNAs. Here we show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus. Furthermore, tomato plants expressing hairpin RNA, derived from potato spindle tuber viroid, developed symptoms similar to those of potato spindle tuber viroid infection. These results provide evidence suggesting that viroids and satellites cause disease symptoms by directing RNA silencing against physiologically important host genes. We also show that viroid and satellite RNAs are significantly resistant to RNA silencing-mediated degradation, suggesting that RNA silencing is an important selection pressure shaping the evolution of the secondary structures of these pathogens.
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, Ro=1.42%, Sydney Basin), which naturally contains CO2 and Baralaba seam (Ro=0.67%, Bowen Basin), a potential candidate for sequestering CO2. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO2 sorption in the micro- and small mesopores (diameter 5 to 175 Å) and the density of the sorbed CO2 at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO2 confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO2 first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO2 density was close to that of the free CO2. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO2 preferentially invaded the smallest micropores and the confined CO2 density was up to five times that of the free CO2. Faster CO2 sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO2 confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity.
Resumo:
Purpose: Small red lights (one minute of arc or less) change colour appearance with positive defocus. We investigated the influence of longitudinal chromatic aberration and monochromatic aberrations on the colour appearance of small narrow band lights. Methods: Seven cyclopleged, trichromatic observers viewed a small light (one minute of arc, λmax = 510, 532, 550, 589, 620, 628 nm, approximately 19 per cent Weber contrast) centred within a black annulus (4.5 minutes of arc) and surrounded by a uniform white field (2,170 cd/m2). Pupil size was four millimetres. An optical trombone varied focus. Longitudinal chromatic aberration was controlled with a two component Powell achromatising lens that neutralises the eye’s chromatic aberration; a doublet that doubles and a triplet that reverses the eye’s chromatic aberration. Astigmatism and higher order monochromatic aberrations were corrected using adaptive optics. Results: Observers reported a change in appearance of the small red light (628 nm) without the Powell lens at +0.49 ± 0.21 D defocus and with the doublet at +0.62 ± 0.16 D. Appearance did not alter with the Powell lens, and five of seven observers reported the phenomenon with the triplet for negative defocus (-0.80 ± 0.47 D). Correction of aberrations did not significantly affect the magnitude at which the appearance of the red light changed (+0.44 ± 0.18 D without correction; +0.46 ± 0.16 D with correction). The change in colour appearance with defocus extended to other wavelengths (λmax = 510 to 620 nm), with directions of effects being reversed for short wavelengths relative to long wavelengths. Conclusions: Longitudinal chromatic aberrations but not monochromatic aberrations are involved in changing the appearance of small lights with defocus.
Resumo:
We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.
Resumo:
For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.
Resumo:
1. The phylogeography of freshwater taxa is often integrally linked with landscape changes such as drainage re-alignments that may present the only avenue for historical dispersal for these taxa. Classical models of gene flow do not account for landscape changes and so are of little use in predicting phylogeography in geologically young freshwater landscapes. When the history of drainage formation is unknown, phylogeographical predictions can be based on current freshwater landscape structure, proposed historical drainage geomorphology, or from phylogeographical patterns of co-distributed taxa. 2. This study describes the population structure of a sedentary freshwater fish, the chevron snakehead (Channa striata), across two river drainages on the Indochinese Peninsula. The phylogeographical pattern recovered for C. striata was tested against seven hypotheses based on contemporary landscape structure, proposed history and phylogeographical patterns of codistributed taxa. 3. Consistent with the species ecology, analysis of mitochondrial and microsatellite loci revealed very high differentiation among all sampled sites. A strong signature of historical population subdivision was also revealed within the contemporary Mekong River Basin (MRB). Of the seven phylogeographical hypotheses tested, patterns of co-distributed taxa proved to be the most adequate for describing the phylogeography of C. striata. 4. Results shed new light on SE Asian drainage evolution, indicating that the Middle MRB probably evolved via amalgamation of at least three historically independent drainage sections and in particular that the Mekong River section centred around the northern Khorat Plateau in NE Thailand was probably isolated from the greater Mekong for an extensive period of evolutionary time. In contrast, C. striata populations in the Lower MRB do not show a phylogeographical signature of evolution in historically isolated drainage lines, suggesting drainage amalgamation has been less important for river landscape formation in this region.