14 resultados para SEROTYPES
em Queensland University of Technology - ePrints Archive
Resumo:
During the spring of 1987, 1,215 samples of spring oats (Avena sativa L.) were collected in Madison, Champaign, Woodford, Warren, and DeKalb counties, Illinois. At each site on each of three sampling dates, 45 samples were collected (regardless of symptoms) in a W pattern in I ha and tested for the PAY, MAV, RPV, and RMV serotypes of barley yellow dwarf virus (BYDV) by direct doubleantibody sandwich enzyme-linked immunosorbent assay (ELISA). RMV was not detected at any location. PAY and RPV were detected at all locations, as early as 17 April in Champaign County. The incidences of P A V and RPV from all plants sampled ranged from 2 to 64% and from 2 to 88%, respectively. Highest incidences of both strains were in May samples [rom Woodford County. MAV was detected in lower incidences (2-16%) only in samples from the central region of the state (Champaign, Woodford, and Warren counties). The presence of MA V serotypes was confirmed in triple-antibody sandwich ELISA with the MA V -specific MAFF2 monoclonal antibody from L. Torrance. In the last previous survey for BYDV in Illinois during 1967-1968 (1), about 75% of the isolates were PAY and about 20% were RPV; single isolates of RMV and MAV were found. Twenty years later, 55% were PAY, 39% were RPV, and 6% were MAV.
Resumo:
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.
Resumo:
BACKGROUND: Infection by dengue virus (DENV) is a major public health concern in hundreds of tropical and subtropical countries. French Polynesia (FP) regularly experiences epidemics that initiate, or are consecutive to, DENV circulation in other South Pacific Island Countries (SPICs). In January 2009, after a decade of serotype 1 (DENV-1) circulation, the first cases of DENV-4 infection were reported in FP. Two months later a new epidemic emerged, occurring about 20 years after the previous circulation of DENV-4 in FP. In this study, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-4 in FP. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological data suggested that recent transmission of DENV-4 in FP started in the Leeward Islands and this serotype quickly displaced DENV-1 throughout FP. Phylogenetic analyses of the nucleotide sequences of the envelope (E) gene of 64 DENV-4 strains collected in FP in the 1980s and in 2009-2010, and some additional strains from other SPICs showed that DENV-4 strains from the SPICs were distributed into genotypes IIa and IIb. Recent FP strains were distributed into two clusters, each comprising viruses from other but distinct SPICs, suggesting that emergence of DENV-4 in FP in 2009 resulted from multiple introductions. Otherwise, we observed that almost all strains collected in the SPICs in the 1980s exhibit an amino acid (aa) substitution V287I within domain I of the E protein, and all recent South Pacific strains exhibit a T365I substitution within domain III. CONCLUSIONS/SIGNIFICANCE: This study confirmed the cyclic re-emergence and displacement of DENV serotypes in FP. Otherwise, our results showed that specific aa substitutions on the E protein were present on all DENV-4 strains circulating in SPICs. These substitutions probably acquired and subsequently conserved could reflect a founder effect to be associated with epidemiological, geographical, eco-biological and social specificities in SPICs.
Resumo:
Background Recurrent protracted bacterial bronchitis (PBB), chronic suppurative lung disease (CSLD) and bronchiectasis are characterised by a chronic wet cough and are important causes of childhood respiratory morbidity globally. Haemophilus influenzae and Streptococcus pneumoniae are the most commonly associated pathogens. As respiratory exacerbations impair quality of life and may be associated with disease progression, we will determine if the novel 10-valent pneumococcal-Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) reduces exacerbations in these children. Methods A multi-centre, parallel group, double-blind, randomised controlled trial in tertiary paediatric centres from three Australian cities is planned. Two hundred six children aged 18 months to 14 years with recurrent PBB, CSLD or bronchiectasis will be randomised to receive either two doses of PHiD-CV or control meningococcal (ACYW(135)) conjugate vaccine 2 months apart and followed for 12 months after the second vaccine dose. Randomisation will be stratified by site, age (<6 years and >= 6 years) and aetiology (recurrent PBB or CSLD/bronchiectasis). Clinical histories, respiratory status (including spirometry in children aged >= 6 years), nasopharyngeal and saliva swabs, and serum will be collected at baseline and at 2, 3, 8 and 14 months post-enrolment. Local and systemic reactions will be recorded on daily diaries for 7 and 30 days, respectively, following each vaccine dose and serious adverse events monitored throughout the trial. Fortnightly, parental contact will help record respiratory exacerbations. The primary outcome is the incidence of respiratory exacerbations in the 12 months following the second vaccine dose. Secondary outcomes include: nasopharyngeal carriage of H. influenzae and S. pneumoniae vaccine and vaccine-related serotypes; systemic and mucosal immune responses to H. influenzae proteins and S. pneumoniae vaccine and vaccine-related serotypes; impact upon lung function in children aged >= 6 years; and vaccine safety. Discussion As H. influenzae is the most common bacterial pathogen associated with these chronic respiratory diseases in children, a novel pneumococcal conjugate vaccine that also impacts upon H. influenzae and helps prevent respiratory exacerbations would assist clinical management with potential short- and long-term health benefits. Our study will be the first to assess vaccine efficacy targeting H. influenzae in children with recurrent PBB, CSLD and bronchiectasis.
Resumo:
Barley yellow dwarf luteovirus-GPV (BYDV-GPV) is a common problem in Chinese wheat crops but is unrecorded elsewhere. A defining characteristic of GPV is its capacity to be transmitted efficiently by both Schizaphis graminum and Rhopaloshiphum padi. This dual aphid species transmission contrasts with those of BYDV-RPV and BYDV-SGV, globally distributed viruses, which are efficiently transmitted only by Rhopaloshiphum padi and Schizaphis graminum respectively. The viral RNA sequences encoding the coat protein (22K) gene, the movement protein (17K) gene, the region surrounding the conserved GDD motif of the polymerase gene and the intergenic sequences between these genes were determined for GPV and an Australian isolate of BYDV-RPV (RPVa). In all three genes, the sequences of GPV and RPVa were more similar to those of an American isolate of BYDV-RPV (RPVu) than to any other luteovirus for which there is data available. RPVa and RPVu were very similar, especially their coat proteins which had 97% identity at the amino acid level. The coat protein of GPV had 76% and 78% amino acid identity with RPVa and RPVu respectively. The data suggest that RPVu and RPVa are correctly named as strains of the same serotype and that GPV is sufficiently different from either RPV strain to be considered a distinct BYDV type. The coat protein and movement protein genes of GPV are very dissimilar to SGV. The polymerase sequences of RPVu, RPVa and GPV show close affinities with those of the sobemo-like luteoviruses and little similarity with those of the carmo-like luteoviruses. The sequences of the coat proteins, movement proteins and the polymerase segments of BYDV serotypes, other than RPV and GPV, form a cluster that is separate from their counterpart sequences from dicot-infecting luteoviruses. The RPV and GPV isolates consistently fall within a dicot-infecting cluster. This suggests that RPV and GPV evolved from within this group of viruses. Since these other viruses all infect dicots it seems likely that their common ancestor infected a dicot and that RPV and GPV evolved from a virus that switched hosts from a dicot to a monocot.
Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia
Resumo:
Introduction Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. Methodology/Principal Findings Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. Conclusions/Significance Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.
Resumo:
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, with uropathogenic Escherichia coli (UPEC) the leading causative organism. UPEC has a number of virulence factors that enable it to overcome host defenses within the urinary tract and establish infection. The O antigen and the capsular polysaccharide are two such factors that provide a survival advantage to UPEC. Here we describe the application of the rpsL counter selection system to construct capsule (kpsD) and O antigen (waaL) mutants and complemented derivatives of three reference UPEC strains: CFT073 (O6:K2:H1), RS218 (O18:K1:H7) and 1177 (O1:K1:H7). We observed that while the O1, O6 and O18 antigens were required for survival in human serum, the role of the capsule was less clear and linked to O antigen type. In contrast, both the K1 and K2 capsular antigens provided a survival advantage to UPEC in whole blood. In the mouse urinary tract, mutation of the O6 antigen significantly attenuated CFT073 bladder colonization. Overall, this study contrasts the role of capsule and O antigen in three common UPEC serotypes using defined mutant and complemented strains. The combined mutagenesis-complementation strategy can be applied to study other virulence factors with complex functions both in vitro and in vivo.
Resumo:
In the Yersinia pseudotuberculosis serotyping scheme, 21 serotypes are present originating from about 30 different O-factors distributed within the species. With regard to the chemical structures of lipopolysaccharides (LPSs) and the genetic basis of their biosynthesis, a number, but not all, of Y. pseudotuberculosis strains representing different serotypes have been investigated. In order to present an overall picture of the relationship between genetics and structures, we have been working on the genetics and structures of various Y. pseudotuberculosis O-specific polysaccharides (OPSs). Here, we present a structural and genetic analysis of the Y. pseudotuberculosis serotype O:11 OPS. Our results showed that this OPS structure has the same backbone as that of Y. pseudotuberculosis O:1b, but with a 6d-l-Altf side-branch instead of Parf. The 3′ end of the gene cluster is the same as that for O:1b and has the genes for synthesis of the backbone and for processing the completed repeat unit. The 5′ end has genes for synthesis of 6d-l-Altf and its transfer to the repeating unit backbone. The pathway for the synthesis of the 6d-l-Altf appears to be different from that for 6d-l-Altp in Y. enterocolitica O:3. The chemical structure of the O:11 repeating unit is [Figure]
Resumo:
The O-specific polysaccharide (OPS) is a variable constituent of the lipopolysaccharide of Gram-negative bacteria. The polymorphic nature of OPSs within a species is usually first defined serologically, and the current serotyping scheme for Yersinia pseudotuberculosis consists of 21 O serotypes of which 15 have been characterized genetically and structurally. Here, we present the structure and DNA sequence of Y. pseudotuberculosis O:10 OPS. The O unit consists of one residue each of d-galactopyranose, N-acetyl-d-galactosamine (2-amino-2-deoxy-d-galactopyranose) and d-glucopyranose in the backbone, with two colitose (3,6-dideoxy-l-xylo-hexopyranose) side-branch residues. This structure is very similar to that shared by Escherichia coli O111 and Salmonella enterica O35. The gene cluster sequences of these serotypes, however, have only low levels of similarity to that of Y. pseudotuberculosis O:10, although there is significant conservation of gene order. Within Y. pseudotuberculosis, the O10 structure is most closely related to the O:6 and O:7 structures.
Resumo:
Many, but not all, of the current 21 serotypes of Yersinia pseudotuberculosis have been investigated with regard to the chemical structures of their O-specific polysaccharide (OPS) and the genetic basis of their biosynthesis. Completion of the genetics and structures of the remaining serotypes will enhance our understanding of the emerging relationship between genetics and structures within this species. Here, we present a structural and genetic analysis of the Y. pseudotuberculosis serotype O:1c OPS. Our results showed that this OPS has the same backbone as Y. pseudotuberculosis O:2b, but with a 3,6-dideoxy-D-ribo-hexofuranose (paratofuranose, Parf) side-branch instead of a 3,6-dideoxy-D-xylo-hexopyranose (abequopyranose, Abep). The 3'-end of the gene cluster is the same as for O:2b and has the genes for synthesis of the backbone and for processing the completed repeat unit. The 5'-end of the cluster consists of the same genes as O:1b for synthesis of Parf and a related gene for its transfer to the repeating unit backbone.
Resumo:
A major virulence factor for Yersinia pseudotuberculosis is lipopolysaccharide, including O-polysaccharide (OPS). Currently, the OPS based serotyping scheme for Y. pseudotuberculosis includes 21 known O-serotypes, with genetic and structural data available for 17 of them. The completion of the OPS structures and genetics of this species will enable the visualization of relationships between O-serotypes and allow for analysis of the evolutionary processes within the species that give rise to new serotypes. Here we present the OPS structure and gene cluster of serotype O:12, thus adding one more to the set of completed serotypes, and show that this serotype is present in both Y. pseudotuberculosis and the newly identified Y. similis species. The O:12 structure is shown to include two rare sugars: 4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-d-xylo-hexose (d-yersiniose) and 6-deoxy-l-glucopyranose (l-quinovose). We have identified a novel putative guanine diphosphate (GDP)-l-fucose 4-epimerase gene and propose a pathway for the synthesis of GDP-l-quinovose, which extends the known GDP-l-fucose pathway.
Resumo:
Streptococcus pneumoniae is a potentially deadly human pathogen associated with high morbidity, mortality and global economic burden. The universally used bacterial genotyping methods are multilocus sequence typing and pulsed field gel electrophoresis. However, another highly discriminatory, rapid and less expensive genotyping technique,multilocus variable number of tandem repeat analysis (MLVA), has been developed. Unfortunately, no universal MLVA protocol exists, and some MLVA protocols do not amplify certain loci for all pneumococcal serotypes, leaving genotyping profiles incomplete. A number of other genotyping or characterization methods have been developed and will be discussed. This review examines the various protocols for genotyping S. pneumoniae and highlights the current direction technology and research is heading to understand this bacterium.
Resumo:
Background Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by many serotypes of hantaviruses. In China, HFRS has been recognized as a severe public health problem with 90% of the total reported cases in the world. This study describes the spatiotemporal dynamics of HFRS cases in China and identifies the regions, time, and populations at highest risk, which could help the planning and implementation of key preventative measures. Methods Data on all reported HFRS cases at the county level from January 2005 to December 2012 were collected from Chinese Center for Disease Control and Prevention. Geographic Information System-based spatiotemporal analyses including Local Indicators of Spatial Association and Kulldorff's space-time scan statistic were performed to detect local high-risk space-time clusters of HFRS in China. In addition, cases from high-risk and low-risk counties were compared to identify significant demographic differences. Results A total of 100,868 cases were reported during 2005–2012 in mainland China. There were significant variations in the spatiotemporal dynamics of HFRS. HFRS cases occurred most frequently in June, November, and December. There was a significant positive spatial autocorrelation of HFRS incidence during the study periods, with Moran's I values ranging from 0.46 to 0.56 (P<0.05). Several distinct HFRS cluster areas were identified, mainly concentrated in northeastern, central, and eastern of China. Compared with cases from low-risk areas, a higher proportion of cases were younger, non-farmer, and floating residents in high-risk counties. Conclusions This study identified significant space-time clusters of HFRS in China during 2005–2012 indicating that preventative strategies for HFRS should be particularly focused on the northeastern, central, and eastern of China to achieve the most cost-effective outcomes.