7 resultados para SDM
em Queensland University of Technology - ePrints Archive
Resumo:
This study explores strategic decision-making (SDM) in micro-firms, an economically significant business subsector. As extant large- and small-firm literature currently proffers an incomplete characterization of SDM in very small enterprises, a multiple-case methodology was used to investigate how these firms make strategic decisions. Eleven Australian Information Technology service micro-firms participated in the study. Using an information-processing lens, the study uncovered patterns of SDM in micro-firms and derived a theoretical micro-firm SDM model. This research also identifies several implications for micro-firm management and directions for future research, contributing to the understanding of micro-firm SDM in both theory and practice.
Resumo:
Research on strategic decision making (SDM) has proliferated in the last decades. Most of the studies however, focus on the process and content of SDM, whereas relatively little interest was awarded to the factors associated with the decision maker influencing SDM. Moreover, most of the research on SDM focuses on large multinationals and little to no research is available that studies the ways in which entrepreneurs make strategic choices. The present study reviews the entrepreneurial traits that influence SDM. These traits are selected by analyzing the literature on the differences between entrepreneurs and managers, under the assumption that these factors are the most indicative for the particularities of entrepreneurial SDM. One of the most important theoretical propositions resulting from this analysis concerns the mediating role of cognitive complexity in the relation between these entrepreneurial traits and SDM outcomes. Directions for further research emerging from this conceptualization are identified and discussed.
Resumo:
Species distribution models (SDMs) are considered to exemplify Pattern rather than Process based models of a species' response to its environment. Hence when used to map species distribution, the purpose of SDMs can be viewed as interpolation, since species response is measured at a few sites in the study region, and the aim is to interpolate species response at intermediate sites. Increasingly, however, SDMs are also being used to also extrapolate species-environment relationships beyond the limits of the study region as represented by the training data. Regardless of whether SDMs are to be used for interpolation or extrapolation, the debate over how to implement SDMs focusses on evaluating the quality of the SDM, both ecologically and mathematically. This paper proposes a framework that includes useful tools previously employed to address uncertainty in habitat modelling. Together with existing frameworks for addressing uncertainty more generally when modelling, we then outline how these existing tools help inform development of a broader framework for addressing uncertainty, specifically when building habitat models. As discussed earlier we focus on extrapolation rather than interpolation, where the emphasis on predictive performance is diluted by the concerns for robustness and ecological relevance. We are cognisant of the dangers of excessively propagating uncertainty. Thus, although the framework provides a smorgasbord of approaches, it is intended that the exact menu selected for a particular application, is small in size and targets the most important sources of uncertainty. We conclude with some guidance on a strategic approach to identifying these important sources of uncertainty. Whilst various aspects of uncertainty in SDMs have previously been addressed, either as the main aim of a study or as a necessary element of constructing SDMs, this is the first paper to provide a more holistic view.
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.
Resumo:
Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural information encoded in the high-dimensional space, and lead to the problem of the curse of dimensionality. In this paper we present the first unsupervised tensorial anomaly detection method, along with a randomised version of our method. Our anomaly detection method, the One-class Support Tensor Machine (1STM), is a generalisation of conventional one-class Support Vector Machines to higher-order spaces. 1STM preserves the multiway structure of tensor data, while achieving significant improvement in accuracy and efficiency over conventional vectorised methods. We then leverage the theory of nonlinear random projections to propose the Randomised 1STM (R1STM). Our empirical analysis on several real and synthetic datasets shows that our R1STM algorithm delivers comparable or better accuracy to a state-of-the-art deep learning method and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.