97 resultados para SCHEDULING OF GRID TASKS
em Queensland University of Technology - ePrints Archive
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
The increasing integration of Renewable Energy Resources (RER) and the role of Electric Energy Storage (EES) in distribution systems has created interest in using energy management strategies. EES has become a suitable resource to manage energy consumption and generation in smart grid. Optimize scheduling of EES can also maximize retailer’s profit by introducing energy time-shift opportunities. This paper proposes a new strategy for scheduling EES in order to reduce the impact of electricity market price and load uncertainty on retailers’ profit. The proposed strategy optimizes the cost of purchasing energy with the objective of minimizing surplus energy cost in hedging contract. A case study is provided to demonstrate the impact of the proposed strategy on retailers’ financial benefit.
Resumo:
Objectives. Intrusive memories of extreme trauma can disrupt a stepwise approach to imaginal exposure. Concurrent tasks that load the visuospatial sketchpad (VSSP) of working memory reduce the vividness of recalled images. This study tested whether relief of distress from competing VSSP tasks during imaginal exposure is at the cost of impaired desensitization . Design. This study examined repeated exposure to emotive memories using 18 unselected undergraduates and a within-subjects design with three exposure conditions (Eye Movement, Visual Noise, Exposure Alone) in random, counterbalanced order. Method. At baseline, participants recalled positive and negative experiences, and rated the vividness and emotiveness of each image. A different positive and negative recollection was then used for each condition. Vividness and emotiveness were rated after each of eight exposure trials. At a post-exposure session 1 week later, participants rated each image without any concurrent task. Results. Consistent with previous research, vividness and distress during imaging were lower during Eye Movements than in Exposure Alone, with passive visual interference giving intermediate results. A reduction in emotional responses from Baseline to Post was of similar size for the three conditions. Conclusion. Visuospatial tasks may offer a temporary response aid for imaginal exposure without affecting desensitization.
Resumo:
Authentic assessment tasks enhance engagement, retention and the aspirations of students. This paper explores the discipline-generic features of authentic assessment, which reflect what students need to achieve in the real world. Some assessment tasks are more authentic than others and this paper designs a proposed framework supported by the literature that aids unit co-ordinators to determine the level of authenticity of an assessment task. The framework is applied to three summative assessment tasks, that is, tutorial participation, advocacy exercise and problem-based exam, in a law unit. The level of authenticity of the assessment tasks is compared and opportunities to improve authenticity are identified.
Resumo:
Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.
Resumo:
There is currently some debate about whether the energy expenditure of domestic tasks is sufficient to confer health benefits. The aim of this study was therefore to measure the energy cost of five activities commonly undertaken by mothers of young children. Seven women with at least one child younger than five years of age spent 15 minutes in each of the following activities: sitting quietly, vacuum cleaning, washing windows, walking at moderate pace (approx 5km/hour), walking with a stroller and grocery shopping in a super-market. Each of the six 'trials' was completed on the same day, in random order. A carefully calibrated portable gas analyser was used to measure oxygen uptake during each activity, and data were converted to units of energy expenditure (METS). Vacuum cleaning, washing windows and walking with and without a stroller were found to be 'moderate intensity activities' (3 to 6 METs), but supermarket shopping did not reach this criterion. The MET values for these activities were similar to those reported in the Compendium of Physical Activities (Ainsworth et al., 2000). However, the energy expenditures of walking, both with and without a stroller, were higher than those reported in the Compendium. The findings suggest that some of the tasks associated with domestic caring duties are conducted at an intensity which is sufficient to confer some health benefit. Such benefits will only accrue however if the daily duration of these activities is sufficient to meet current guidelines.
Resumo:
Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.
Resumo:
This paper presents a novel concept of Energy Storage System (ESS) interfacing with the grid side inverter in wind energy conversion systems. The inverter system used here is formed by cascading a 2-level inverter and a three level inverter through a coupling transformer. The constituent inverters are named as the “main inverter” and the “auxiliary inverter” respectively. The main inverter is connected with the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). The BESS ensures constant power dispatch to the grid irrespective of change in wind condition. Furthermore, this unique combination of BESS and inverter eliminates the need of additional dc-dc converters. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-changing dc-link voltage ratio, which is due to random wind changes. Strategies used to handle auxiliary inverter dc-link voltage imbalances and controllers used to charge batteries at different rates are explained in detail. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques in suppressing random wind power fluctuations.
Resumo:
Real-Time Kinematic (RTK) positioning is a technique used to provide precise positioning services at centimetre accuracy level in the context of Global Navigation Satellite Systems (GNSS). While a Network-based RTK (N-RTK) system involves multiple continuously operating reference stations (CORS), the simplest form of a NRTK system is a single-base RTK. In Australia there are several NRTK services operating in different states and over 1000 single-base RTK systems to support precise positioning applications for surveying, mining, agriculture, and civil construction in regional areas. Additionally, future generation GNSS constellations, including modernised GPS, Galileo, GLONASS, and Compass, with multiple frequencies have been either developed or will become fully operational in the next decade. A trend of future development of RTK systems is to make use of various isolated operating network and single-base RTK systems and multiple GNSS constellations for extended service coverage and improved performance. Several computational challenges have been identified for future NRTK services including: • Multiple GNSS constellations and multiple frequencies • Large scale, wide area NRTK services with a network of networks • Complex computation algorithms and processes • Greater part of positioning processes shifting from user end to network centre with the ability to cope with hundreds of simultaneous users’ requests (reverse RTK) There are two major requirements for NRTK data processing based on the four challenges faced by future NRTK systems, expandable computing power and scalable data sharing/transferring capability. This research explores new approaches to address these future NRTK challenges and requirements using the Grid Computing facility, in particular for large data processing burdens and complex computation algorithms. A Grid Computing based NRTK framework is proposed in this research, which is a layered framework consisting of: 1) Client layer with the form of Grid portal; 2) Service layer; 3) Execution layer. The user’s request is passed through these layers, and scheduled to different Grid nodes in the network infrastructure. A proof-of-concept demonstration for the proposed framework is performed in a five-node Grid environment at QUT and also Grid Australia. The Networked Transport of RTCM via Internet Protocol (Ntrip) open source software is adopted to download real-time RTCM data from multiple reference stations through the Internet, followed by job scheduling and simplified RTK computing. The system performance has been analysed and the results have preliminarily demonstrated the concepts and functionality of the new NRTK framework based on Grid Computing, whilst some aspects of the performance of the system are yet to be improved in future work.
Resumo:
The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.