183 resultados para Runoff forecasting

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mine site water balance is important for communicating information to interested stakeholders, for reporting on water performance, and for anticipating and mitigating water-related risks through water use/demand forecasting. Gaining accuracy over the water balance is therefore crucial for sites to achieve best practice water management and to maintain their social license to operate. For sites that are located in high rainfall environments the water received to storage dams through runoff can represent a large proportion of the overall inputs to site; inaccuracies in these flows can therefore lead to inaccuracies in the overall site water balance. Hydrological models that estimate runoff flows are often incorporated into simulation models used for water use/demand forecasting. The Australian Water Balance Model (AWBM) is one example that has been widely applied in the Australian context. However, the calibration of AWBM in a mining context can be challenging. Through a detailed case study, we outline an approach that was used to calibrate and validate AWBM at a mine site. Commencing with a dataset of monitored dam levels, a mass balance approach was used to generate an observed runoff sequence. By incorporating a portion of this observed dataset into the calibration routine, we achieved a closer fit between the observed vs. simulated dataset compared with the base case. We conclude by highlighting opportunities for future research to improve the calibration fit through improving the quality of the input dataset. This will ultimately lead to better models for runoff prediction and thereby improve the accuracy of mine site water balances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland Department of Public Works (DPW) holds a significant interest in the Brisbane Central Business District (CBD) in controlling approximately 20 percent of the office space within its confines. This comprises a total of 333,903 square metres of space, of which 170,111 square metres is owned and 163,792 square metres is leased from the private sector. The department’s nominal ownership extends to several enduring, landmark buildings as well as several modern office towers. The portfolio includes the oldest building in the CBD, being the former Commissariat Stores building and one of the newest, a 15,000 square metre office tower under construction at 33 Charlotte Street.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we are interested in financial risk and the instrument we want to use is Value-at-Risk (VaR). VaR is the maximum loss over a given period of time at a given confidence level. Many definitions of VaR exist and some will be introduced throughout this thesis. There two main ways to measure risk and VaR: through volatility and through percentiles. Large volatility in financial returns implies greater probability of large losses, but also larger probability of large profits. Percentiles describe tail behaviour. The estimation of VaR is a complex task. It is important to know the main characteristics of financial data to choose the best model. The existing literature is very wide, maybe controversial, but helpful in drawing a picture of the problem. It is commonly recognised that financial data are characterised by heavy tails, time-varying volatility, asymmetric response to bad and good news, and skewness. Ignoring any of these features can lead to underestimating VaR with a possible ultimate consequence being the default of the protagonist (firm, bank or investor). In recent years, skewness has attracted special attention. An open problem is the detection and modelling of time-varying skewness. Is skewness constant or there is some significant variability which in turn can affect the estimation of VaR? This thesis aims to answer this question and to open the way to a new approach to model simultaneously time-varying volatility (conditional variance) and skewness. The new tools are modifications of the Generalised Lambda Distributions (GLDs). They are four-parameter distributions, which allow the first four moments to be modelled nearly independently: in particular we are interested in what we will call para-moments, i.e., mean, variance, skewness and kurtosis. The GLDs will be used in two different ways. Firstly, semi-parametrically, we consider a moving window to estimate the parameters and calculate the percentiles of the GLDs. Secondly, parametrically, we attempt to extend the GLDs to include time-varying dependence in the parameters. We used the local linear regression to estimate semi-parametrically conditional mean and conditional variance. The method is not efficient enough to capture all the dependence structure in the three indices —ASX 200, S&P 500 and FT 30—, however it provides an idea of the DGP underlying the process and helps choosing a good technique to model the data. We find that GLDs suggest that moments up to the fourth order do not always exist, there existence appears to vary over time. This is a very important finding, considering that past papers (see for example Bali et al., 2008; Hashmi and Tay, 2007; Lanne and Pentti, 2007) modelled time-varying skewness, implicitly assuming the existence of the third moment. However, the GLDs suggest that mean, variance, skewness and in general the conditional distribution vary over time, as already suggested by the existing literature. The GLDs give good results in estimating VaR on three real indices, ASX 200, S&P 500 and FT 30, with results very similar to the results provided by historical simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create hypovigilance and impair performance towards critical events. Identifying such impairment in monotonous conditions has been a major subject of research, but no research to date has attempted to predict it in real-time. This pilot study aims to show that performance decrements due to monotonous tasks can be predicted through mathematical modelling taking into account sensation seeking levels. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants‟ performance. The framework for prediction developed on this task could be extended to a monotonous driving task. A Hidden Markov Model (HMM) is proposed to predict participants‟ lapses in alertness. Driver‟s vigilance evolution is modelled as a hidden state and is correlated to a surrogate measure: the participant‟s reactions time. This experiment shows that the monotony of the task can lead to an important decline in performance in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban traffic and climate change are two phenomena that have the potential to degrade urban water quality by influencing the build-up and wash-off of pollutants, respectively. However, limited knowledge has made it difficult to establish any link between pollutant buildup and wash-off under such dynamic conditions. In order to safeguard urban water quality, adaptive water quality mitigation measures are required. In this research, pollutant build-up and wash-off have been investigated from a dynamic point of view which incorporated the impacts of changed urban traffic as well as changes in the rainfall characteristics induced by climate change. The study has developed a dynamic object classification system and thereby, conceptualised the study of pollutant build-up and wash-off under future changes in urban traffic and rainfall characteristics. This study has also characterised the buildup and wash-off processes of traffic generated heavy metals, volatile, semi-volatile and non-volatile hydrocarbons under dynamic conditions which enables the development of adaptive mitigation measures for water quality. Additionally, predictive frameworks for the build-up and wash-off of some pollutants have also been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to jointly assess the impact of regulatory reform for corporate fundraising in Australia (CLERP Act 1999) and the relaxation of ASX admission rules in 1999, on the accuracy of management earnings forecasts in initial public offer (IPO) prospectuses. The relaxation of ASX listing rules permitted a new category of new economy firms (commitments test entities (CTEs))to list without a prior history of profitability, while the CLERP Act (introduced in 2000) was accompanied by tighter disclosure obligations and stronger enforcement action by the corporate regulator (ASIC). Design/methodology/approach – All IPO earnings forecasts in prospectuses lodged between 1998 and 2003 are examined to assess the pre- and post-CLERP Act impact. Based on active ASIC enforcement action in the post-reform period, IPO firms are hypothesised to provide more accurate forecasts, particularly CTE firms, which are less likely to have a reasonable basis for forecasting. Research models are developed to empirically test the impact of the reforms on CTE and non-CTE IPO firms. Findings – The new regulatory environment has had a positive impact on management forecasting behaviour. In the post-CLERP Act period, the accuracy of prospectus forecasts and their revisions significantly improved and, as expected, the results are primarily driven by CTE firms. However, the majority of prospectus forecasts continue to be materially inaccurate. Originality/value – The results highlight the need to control for both the changing nature of listed firms and the level of enforcement action when examining responses to regulatory changes to corporate fundraising activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasts generated by time series models traditionally place greater weight on more recent observations. This paper develops an alternative semi-parametric method for forecasting that does not rely on this convention and applies it to the problem of forecasting asset return volatility. In this approach, a forecast is a weighted average of historical volatility, with the greatest weight given to periods that exhibit similar market conditions to the time at which the forecast is being formed. Weighting is determined by comparing short-term trends in volatility across time (as a measure of market conditions) by means of a multivariate kernel scheme. It is found that the semi-parametric method produces forecasts that are significantly more accurate than a number of competing approaches at both short and long forecast horizons.