467 resultados para Running water
em Queensland University of Technology - ePrints Archive
Resumo:
With significant population growth experienced in South East Queensland over the past two decades and a high rate of growth expected to continue in coming decades, the Queensland Government is promoting urban consolidation planning policies to manage growth sustainably. Multi-residential buildings will play an important role in facilitating the increased densities which urban consolidation policies imply. However, a major flood event in January 2011 has brought to light the vulnerability of certain types of multi-residential typologies to power outages. The crisis conditions exposed how contemporary building design and construction practices, coupled with regulatory and planning issues, appear to have compromised the resilience and habitability of multi-storey residential buildings. In the greater urban area of Brisbane, Queensland, the debilitating dependence that certain types of apartment buildings have on mains electricity was highlighted by residents’ experiences of the Brisbane River flood disaster, before, during and after the event. This research examined high density residential buildings in West End, Brisbane, an inner city suburb which was severely affected by the flood and is earmarked for significant urban densification under the Brisbane City Plan. Medium-to-high-density residential buildings in the suburb were mapped in flooded and non-flooded locations and a database containing information about the buildings was created. Parameters included date of construction, number of storeys, systems of access and circulation, and potential for access to natural light and ventilation for habitable areas. A series of semi-structured interviews were conducted with residents involved in the owners’ management committees of several buildings to verify information the mapping could not provide. The interviews identified a number of critical systems failures due to power outage which had a significant impact on residents’ wellbeing, comfort and safety. Building services such as lifts, running water, fire alarms, security systems and air-conditioning ceased to operate when power was disconnected to neighbourhoods and buildings in anticipation of rising flood waters. Lack of access to buildings and dwellings, lack of safety, lack of building security, and lack of thermal comfort affected many residents whether or not their buildings were actually subjected to inundation, with some buildings rendered uninhabitable for a prolonged period. The extent of the impact on residents was dramatically influenced by the scale and type of building inhabited, with those dwelling in buildings under a 25m height limit, with a single lift, found to be most affected. The energy-dependency and strong trend of increasing power demands of high-rise buildings is well-documented. Extended electricity outages such as the one brought about by the 2011 flood in Queensland are likely to happen more frequently than the 50-year average of the flood event itself. Electricity blackouts can result from a number of man-made or natural causes, including shortages caused by demand exceeding supply. This paper highlights the vulnerability of energy-dependent buildings to power outages and investigates options for energy security for occupants of multi-storey buildings and makes recommendations to increase resilience and general liveability in multi-residential buildings in the subtropics through design modifications.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various durations (10min, 20min, 30min or 1h) and delays (immediate, 10min, 1h, 3h) of 15 degrees C running water first aid were applied to burns and compared to untreated controls. The subdermal temperatures were monitored during the treatment and wounds observed weekly for 6 weeks, for re-epithelialisation, wound surface area and cosmetic appearance. At 6 weeks after the burn, tissue biopsies were taken of the scar for histological analysis. Results showed that immediate application of cold running water for 20min duration is associated with an improvement in re-epithelialisation over the first 2 weeks post-burn and decreased scar tissue at 6 weeks. First aid application of cold water for as little as 10min duration or up to 1h delay still provides benefit.
Resumo:
The recommendations for the first aid treatment of burn injuries have previously been based upon conflicting published studies and as a result the recommendations have been vague with respect to optimal first aid treatment modality, temperature, duration and delay after which treatment is still effective. The public have also continued to use treatments such as ice and alternative therapies, however there is little evidence to support their use. Recently there have been several studies conducted by burn researchers in Australia which have enabled the recommendations to be clarified. First aid should consist of cool running water (2-15°C), applied for 20 minutes duration, as soon as possible but for up to 3 hours after the burn injury has occurred. Ice should not be used and alternative therapies should only be used to relieve pain as an adjunct to cold water treatment. Optimal first aid treatment significantly reduces tissue damage, hastens wound re-epithelialisation and reduces scarring and should be promoted widely to the public.
Resumo:
OBJECTIVE: The present study evaluates the prehospital care of paediatric burn patients in Queensland (QLD). As first aid (FA) treatment has been shown to affect burn progression and outcome, the FA treatment and the risk of associated hypothermia in paediatric patients were specifically examined in the context of paramedic management of burn patients. METHODS: Data were retrospectively collected from electronic ambulance response forms (eARFs) for paediatric burn patients (0-5 years) who were attended by Queensland Ambulance Service (QAS) from 2008 to 2010. Data were collected from 117 eARFs of incidents occurring within the Brisbane, Townsville and Cairns regions. RESULTS: Initial FA measures were recorded in 77.8% of cases, with cool running water FA administered in 56.4% of cases. The duration of FA was recorded in 29.9% of reports. The duration of FA was significantly shorter for patients in Northern QLD (median = 10 min, n = 10) compared with Brisbane (median = 15 min, n = 18), P = 0.005. Patient temperatures were recorded significantly more often in Brisbane than in other regions (P = 0.041); however, in total, only 24.8% of all patients had documented temperature readings. Of these, six (5%) were recorded as having temperatures ≤ 36.0°C. Burnaid(TM) was the most commonly used dressing and was applied to 55.6% of all patients; however, it was applied with a variety of different outer dressings. Brisbane paramedics applied Burnaid significantly less often (44.3%) compared with paramedics from Northern QLD (72.7%) and Far Northern QLD (60.9%), P = 0.025. CONCLUSIONS: Despite FA and patient temperatures being important prognostic factors for burn patients, paramedic documentation of these was often incomplete, and there was no consistent use of burns dressings.
Resumo:
The aim of the study was to assess the feasibility and effectiveness of aquatic‐based exercise in the form of deep water running ( DWR ) as part of a multimodal physiotherapy programme ( MMPP ) for breast cancer survivors. A controlled clinical trial was conducted in 42 primary breast cancer survivors recruited from community‐based P rimary C are C entres. Patients in the experimental group received a MMPP incorporating DWR , 3 times a week, for an 8‐week period. The control group received a leaflet containing instructions to continue with normal activities. Statistically significant improvements and intergroup effect size were found for the experimental group for P iper F atigue S cale‐ R evised total score ( d = 0.7, P = 0.001), as well as behavioural/severity ( d = 0.6, P = 0.05), affective/meaning ( d = 1.0, P = 0.001) and sensory ( d = 0.3, P = 0.03) domains. Statistically significant differences between the experimental and control groups were also found for general health ( d = 0.5, P < 0.05) and quality of life ( d = 1.3, P < 0.05). All participants attended over 80% of sessions, with no major adverse events reported. The results of this study suggest MMPP incorporating DWR decreases cancer‐related fatigue and improves general health and quality of life in breast cancer survivors. Further, the high level of adherence and lack of adverse events indicate such a programme is safe and feasible.
Resumo:
Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show: Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load. There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures. The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases. The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.
Resumo:
"Does heat have a cooling effect on culture? Sweat argues the reverse: culture thrives in the subtropical zones. While acknowledging that the subtropical generates ambivalence—being cast as alternately idyllic or hellish—Sweat nonetheless seeks to develop the specific voices of subtropical cultures. The uneasy place of this sweaty discourse is explored across art, literature, architecture, and the built environment. In particular, Sweat focuses on the most commonly experienced situation, the everyday house. While it addresses subjects from Japan, Brazil, and France, Sweat centres on Brisbane, Queensland—long in the shadow of Sydney and Melbourne in the Australian cultural psyche—due to its enduring and self-conscious attention to subtropical living..." -- online book description
Resumo:
The purpose of this study was to compare the effectiveness of three different recovery modalities - active (ACT), passive (PAS) and contrast temperature water immersion (CTW) - on the performance of repeated treadmill running, lactate concentration and pH. Fourteen males performed two pairs of treadmill runs to exhaustion at 120% and 90% of peak running speed (PRS) over a 4-hour period. ACT, PAS or CTW was performed for 15-min after the first pair of treadmill runs. ACT consisted of running at 40% PRS, PAS consisted of standing stationary and CTW consisted of alternating between 60-s cold (10°C) and 120-s hot (42°C) water immersion. Run times were converted to time to cover set distance using critical power. Type of recovery modality did not have a significant effect on change in time to cover 400 m (Mean±SD; ACT 2.7±3.6 s, PAS 2.9±4.2 s, CTW 4.2±6.9 s), 1000 m (ACT 2.2±4.0 s, PAS 4.8±8.6 s, CTW 2.1±7.2 s) or 5000 m (ACT 1.4±29.0 s, PAS 16.7±58.5 s, CTW 11.7±33.0 s). Post exercise blood lactate concentration was lower in ACT and CTW compared with PAS. Participants reported an increased perception of recovery in the CTW compared with ACT and PAS. Blood pH was not significantly influenced by recovery modality. Data suggest both ACT and CTW reduce lactate accumulation after high intensity running, but high intensity treadmill running performance is returned to baseline 4-hours after the initial exercise bout regardless of the recovery strategy employed.