4 resultados para Rosaceae.

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria Ã- ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×-39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heliothine moths (Lepidoptera: Heliothinae) include some of the world's most devastating pest species. Whereas the majority of nonpest heliothinae specialize on a single plant family, genus, or species, pest species are highly polyphagous, with populations often escalating in size as they move from one crop species to another. Here, we examine the current literature on heliothine host-selection behavior with the aim of providing a knowledge base for research scientists and pest managers. We review the host relations of pest heliothines, with a particular focus on Helicoverpa armigera (Hubner), the most economically damaging of all heliothine species. We then consider the important question of what constitutes a host plant in these moths, and some of the problems that arise when trying to determine host plant status from empirical studies on host use. The top six host plant families in the two main Australian pest species (H. armigera and Helicoverpa punctigera Wallengren) are the same and the top three (Asteraceae, Fabaceae, and Malvaceae) are ranked the same (in terms of the number of host species on which eggs or larvae have been identified), suggesting that these species may use similar cues to identify their hosts. In contrast, for the two key pest heliothines in the Americas, the Fabaceae contains approximate to 1/3 of hosts for both. For Helicoverpa zea (Boddie), the remaining hosts are more evenly distributed, with Solanaceae next, followed by Poaceae, Asteraceae, Malvaceae, and Rosaceae. For Heliothis virescens (F.), the next highest five families are Malvaceae, Asteraceae, Solanaceae, Convolvulaceae, and Scrophulariaceae. Again there is considerable overlap in host use at generic and even species level. H. armigera is the most widely distributed and recorded from 68 plant families worldwide, but only 14 families are recorded as a containing a host in all geographic areas. A few crop hosts are used throughout the range as expected, but in some cases there are anomalies, perhaps because host plant relation studies are not comparable. Studies on the attraction of heliothines to plant odors are examined in the context of our current understanding of insect olfaction, with the aim of better understanding the connection between odor perception and host choice. Finally, we discuss research into sustainable management of pest heliothines using knowledge of heliothine behavior and ecology. A coordinated international research effort is needed to advance our knowledge on host relations in widely distributed polyphagous species instead of the localized, piecemeal approaches to understanding these insects that has been the norm to date.