34 resultados para Root canal with multi curvature

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-level current reinjection concept described in literature is well-known to produce high quality AC current waveforms in high power and high voltage self-commutating current source converters. This paper proposes a novel reinjection circuitry which is capable of producing a 7-level reinjection current. It is shown that this reinjection current effectively increases the pulse number of the converter to 72. The use of PSCAD/EMTDC simulation validates the functionality of the proposed concept illustrating its effectiveness on both AC and DC sides of the converter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies receiver autonomous integrity monitoring (RAIM) algorithms and performance benefits of RTK solutions with multiple-constellations. The proposed method is generally known as Multi-constellation RAIM -McRAIM. The McRAIM algorithms take advantage of the ambiguity invariant character to assist fast identification of multiple satellite faults in the context of multiple constellations, and then detect faulty satellites in the follow-up ambiguity search and position estimation processes. The concept of Virtual Galileo Constellation (VGC) is used to generate useful data sets of dual-constellations for performance analysis. Experimental results from a 24-h data set demonstrate that with GPS&VGC constellations, McRAIM can significantly enhance the detection and exclusion probabilities of two simultaneous faulty satellites in RTK solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vehicular Ad-hoc Networks (VANET) have different characteristics compared to other mobile ad-hoc networks. The dynamic nature of the vehicles which act as routers and clients are connected with unreliable radio links and Routing becomes a complex problem. First we propose CO-GPSR (Cooperative GPSR), an extension of the traditional GPSR (Greedy Perimeter Stateless Routing) which uses relay nodes which exploit radio path diversity in a vehicular network to increase routing performance. Next we formulate a Multi-objective decision making problem to select optimum packet relaying nodes to increase the routing performance further. We use cross layer information for the optimization process. We evaluate the routing performance more comprehensively using realistic vehicular traces and a Nakagami fading propagation model optimized for highway scenarios in VANETs. Our results show that when Multi-objective decision making is used for cross layer optimization of routing a 70% performance increment can be obtained for low vehicle densities on average, which is a two fold increase compared to the single criteria maximization approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was a step forward to improve the performance for discovering useful knowledge – especially, association rules in this study – in databases. The thesis proposed an approach to use granules instead of patterns to represent knowledge implicitly contained in relational databases; and multi-tier structure to interpret association rules in terms of granules. Association mappings were proposed for the construction of multi-tier structure. With these tools, association rules can be quickly assessed and meaningless association rules can be justified according to the association mappings. The experimental results indicated that the proposed approach is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of multiple satellite navigation systems, including BDS, Galileo, modernized GPS, and GLONASS, brings great opportunities and challenges for precise point positioning (PPP). We study the contributions of various GNSS combinations to PPP performance based on undifferenced or raw observations, in which the signal delays and ionospheric delays must be considered. A priori ionospheric knowledge, such as regional or global corrections, strengthens the estimation of ionospheric delay parameters. The undifferenced models are generally more suitable for single-, dual-, or multi-frequency data processing for single or combined GNSS constellations. Another advantage over ionospheric-free PPP models is that undifferenced models avoid noise amplification by linear combinations. Extensive performance evaluations are conducted with multi-GNSS data sets collected from 105 MGEX stations in July 2014. Dual-frequency PPP results from each single constellation show that the convergence time of undifferenced PPP solution is usually shorter than that of ionospheric-free PPP solutions, while the positioning accuracy of undifferenced PPP shows more improvement for the GLONASS system. In addition, the GLONASS undifferenced PPP results demonstrate performance advantages in high latitude areas, while this impact is less obvious in the GPS/GLONASS combined configuration. The results have also indicated that the BDS GEO satellites have negative impacts on the undifferenced PPP performance given the current “poor” orbit and clock knowledge of GEO satellites. More generally, the multi-GNSS undifferenced PPP results have shown improvements in the convergence time by more than 60 % in both the single- and dual-frequency PPP results, while the positioning accuracy after convergence indicates no significant improvements for the dual-frequency PPP solutions, but an improvement of about 25 % on average for the single-frequency PPP solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach,which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffraction tomographic imaging is applied to the imaging of shallowly buried targets with multi-bistatic arrays of transmitters and receivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigates the use of temporal lip information, in conjunction with speech information, for robust, text-dependent speaker identification. We propose that significant speaker-dependent information can be obtained from moving lips, enabling speaker recognition systems to be highly robust in the presence of noise. The fusion structure for the audio and visual information is based around the use of multi-stream hidden Markov models (MSHMM), with audio and visual features forming two independent data streams. Recent work with multi-modal MSHMMs has been performed successfully for the task of speech recognition. The use of temporal lip information for speaker identification has been performed previously (T.J. Wark et al., 1998), however this has been restricted to output fusion via single-stream HMMs. We present an extension to this previous work, and show that a MSHMM is a valid structure for multi-modal speaker identification

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to develop a new intra-canal disinfectant-carrier for infected canal treatment. To achieve this purpose, a new porous Ca-Si (CS)-based nanosphere was synthesized and characterized. Results showed that the nanospheres can infiltrate into dentinal tubules and released the ampicillin over one week time in a sustained manner. The release of ampicillin from spheres has significantly antibacterial property. Extensive and well-organized in vitro mineralization and crystallization of apatite were induced on the surface of dentin slices covered by CS nanospheres. All these features indicate that the porous CS nanospheres may be developed into a new intra-canal disinfectant-carrier for infected canal treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.