15 resultados para Roofing.
em Queensland University of Technology - ePrints Archive
Resumo:
Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .
Resumo:
Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.
Resumo:
Sandwich shells have recently emerged as aesthetically pleasing, efficient and economical structural systems, with a number of applications. They combine the advantages of sandwich layer technology together with those of shell action. With different materials and thicknesses used in the sandwich layers, their performance characteristics largely remain un-quantified and there are no guidelines at present for their design. This research paper provides verification, through finite element modeling and testing, for the application of this technology to dome styled dwellings with research currently being conducted into the further application to roofing and floor structures.
Resumo:
Profiled steel roof claddings in Australia are commonly made of very thin high tensile steel and are crest-fixed with screw fasteners. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour of these claddings under wind uplift, and thus the design methods, a detailed investigation consisting of a finite element analysis and laboratory experiments was carried out on two-span roofing assemblies of three common roofing profiles. It was found that the failure of the roof cladding system was due to a local failure (dimpling of crests/pull-through) at the fasteners. This paper presents the details of the investigation, the results and then proposes a design method based on the strength of the screwed connections, for which testing of small-scale roofing models and/or using a simple design formula is recommended.
Resumo:
During an investigation on thin steel roof claddings under simulated cyclonic wind loading, it was found that trapezoidal roof claddings behaved quite differently to corrugated (arc and tangent type) roof claddings due to the presence of overload cycles. The overload cycles caused a reduction in fatigue life for corrugated roofing whereas the reverse occurred for trapezoidal roofing. This contrasting behavior of the two crest-fixed roof claddings was investigated using small scale roofing models instead of the commonly used large scale two-span roof claddings. It was found that overload cycles formed a weaker locally dimpled mechanism around the fastener holes of corrugated roofing and thus accelerated the fatigue-caused pull-through failure. In contrast, a stronger deformed shape was formed in trapezoidal roofing which delayed the pull-through failure. Both laboratory testing and finite element analysis of small scale models were used to study the contrasting behavior of roof claddings.
Resumo:
Currently two different fatigue tests are being used to investigate the fatigue susceptibility of roof claddings in the cyclone prone areas of Australia. In order to resolve this issue a detailed investigation was conducted to study the nature of cyclonic wind forces using wind tunnel testing and computer modelling and the fatigue behaviour of metal roof claddings using structural testing. This led to the development of an accurate, but complicated loading matrix for a design cyclone. Based on this matrix, a simplified low-high-low loading sequence has been developed for the testing of roofing systems in cyclone prone areas. This paper first reviews the currently used fatigue loading sequences, then presents details of the cyclonic wind loading matrix and finally the development of the new simplified loading sequence. This simplified sequence should become the only suitable test for most of the cyclone prone areas of Australia covered by Region C which suffers from Category 4 cyclones. For Region D which suffers from Category 5 cyclones, the same loading sequence with 20% increased cycles has been recommended. An experimental programme to validate the new simplified loading sequence has been proposed.
Resumo:
Roofing tile manufacturing is a mass production process with high operational and inventory wastes and costs. Due to huge operational costs, excessive inventory and wastes, and quality problems, roofing tile manufacturers are trying to implement lean manufacturing practice in their operations in order to remain competitive in an ncreasingly competitive global market. The aim of this research is to evaluate the possibility of reducing the operational and inventory costs of the tile manufacturing process through waste minimization. This paper analyses the current waste situation in a tile manufacturing process and develops current and future value stream mapping for such a process with a view to implementing lean principles in manufacturing. The focus of the approach is on cost reduction by eliminating non-value-added activities.
Resumo:
Profiled steel roof claddings in Australia and its neighbouring countries are commonly made of very thin high tensile steel and are crest-fixed intermittently with screw fasteners. The failure of the roof cladding systems was due to a local failure (dimpling of crests I pull-through) at the fasteners under wind uplift Cyclic wind uplift during cyclones causes fatigue cracking to occur at the fastener holes which leads to pull-through failures at lower load levels. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour and the design and test methods of these claddings under wind uplift loading during storms and cyclones, a detailed investigation consisting of finite element analyses, static and fatigue experiments and cyclonic wind modelling was carried out on two-span roofing assemblies of three common roofing profiles. This paper presents the details of this investigation and its important results.
Resumo:
Thin profiled steel roof sheeting and battens are increasingly used in the construction of roofing systems of residential, commercial, industrial and farm buildings in Australia. The critical load combination of external wind suction and internal wind pressures that occur during high wind events such as thunderstorms and tropical cylcones often dislocate the roofing systems partially or even completely due to premature roof connection failures. Past wind damage investigations have shown that roof sheeting failures occured at their screw connections to battens. In most of these cases, the screw fastener head pulled through the thin roof sheeting whilst the screw fasteners also pulled out from the battens. Research studis undertaken on the roof sheeting to batten connection failures have improved this situation. However, the batten to rafter or truss connections have not been investigated adequately. Failure of these connections can cause the failure of the entire roof structure as observed during the recent high wind events. Therefore a detailed experimental study consisting of both small scale and full scale tests has been undertaken to investigate the steel roof batten pull-through failures in relation to many critical parameters such as steel batten geometry, thickness and grade, screw fastener head sizes and screw tightening. This paper presents the details of this experimental study and the pull-through failure load results obtained from them. Finally it discusses the development of suitable design rules that can be used to determine the pull-through connection capacities of thin steel roof battens under wind uplift loads.
Resumo:
Extreme wind events such as tropical cyclones, tornadoes and storms are more likely to impact the Australian coastal regions due to possible climate changes. Such events can be extremely destructive to building structures, in particular, low-rise buildings with lightweight roofing systems that are commonly made of thin steel roofing sheets and battens. Large wind uplift loads that act on the roofs during high wind events often cause premature roof connection failures. Recent wind damage investigations have shown that roof failures have mostly occurred at the batten to rafter or truss screw connections. In most of these cases, the screw fastener heads pulled through the bottom flanges of thin steel roof battens. This roof connection failure is very critical as both roofing sheets and battens will be lost during the high wind events. Hence, a research study was conducted to investigate this critical pull-through failure using both experimental and numerical methods. This paper presents the details of numerical modeling and the results.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.