44 resultados para Rocks, Carbonate

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium carbonate minerals artinite and dypingite have been studied by Raman spectroscopy. Intense bands are observed at 1092 cm-1 for artinite and at 1120 cm-1 for dypingite attributed CO32- ν1 symmetric stretching mode. The CO32- ν3 antisymmetric stretching vibrations are extremely weak and are observed at1412 and 1465 cm-1 for artinite and at 1366, 1447 and 1524 cm-1 for dypingite. Very weak Raman bands at 790 cm-1 for artinite and 800 cm-1 for dypingite are assigned to the CO32- ν2 out-of-plane bend. The Raman band at 700 cm-1 of artinite and at 725 and 760 cm-1 of dypingite are ascribed to CO32- ν2 in-plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (a) an intense band at 3593 cm-1 assigned to the MgOH stretching vibrations and (b) the broad profile of overlapping bands at 3030 and 3229 cm-1 attributed to water stretching vibrations. X-ray diffraction studies show the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approach to remove green house gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite and artinite are possible; thus necessitating a study of such minerals. Two carbonate bearing minerals dypingite and artinite with a hydrotalcite related formulae have been characterised by a combination of infrared and near-infrared spectroscopy. The infrared spectra of both minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030 to 7235 cm-1 and 10490 to 10570 cm-1. Intense (CO3)2- symmetric and antisymmetric stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen bonded to the carbonate anion in the mineral structure. Split NIR bands at around 8675 and 11100 cm-1 indicates that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four nickel carbonate-bearing minerals from Australia have been investigated to study the effect of Ni for Mg substitution. The spectra of nullaginite, zaratite, widgiemoolthalite and takovite show three main features in the range of 26,720–25,855 cm−1 (ν1-band), 15,230–14,740 cm−1 (ν2-band) and 9,200–9,145 cm−1 (ν3-band) which are characteristic of divalent nickel in six-fold coordination. The Crystal Field Stabilization Energy (CFSE) of Ni2+ in the four carbonates is calculated from the observed 3A2g(3F) → 3T2g(3F) transition. CFSE is dependent on mineralogy, crystallinity and chemical composition (Al/Mg-content). The splitting of the ν1- and ν3-bands and non-Gaussian shape of ν3-band in the minerals are the effects of Ni-site distortion from regular octahedral. The effect of structural cation substitutions (Mg2+, Ni2+, Fe2+ and trivalent cations, Al3+, Fe3+) in the carbonate minerals is noticed on band shifts. Thus, electronic bands in the UV–Vis–NIR spectra and the overtones and combination bands of OH and carbonate ion in NIR show shifts to higher wavenumbers, particularly for widgiemoolthalite and takovite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and infrared spectroscopies were used to characterise two samples of triclinic ejkaite Na4[UO2(CO3)3] and its synthetic trigonal analogue. The v3 (UO2)2+ mode is not Raman active, whereas both the v3 and v1 (UO2)2+ modes are infrared active. U--O bond lengths in uranyls were calculated from the spectra obtained and compared with bond lengths derived from crystal structure analyses. From the higher number of bands related to the uranyl and carbonate vibrations, the presence of symmetrically distinct (UO2)2+ and (CO3)2- units in both structures is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mount Isa Basin is a new concept used to describe the area of Palaeo- to Mesoproterozoic rocks south of the Murphy Inlier and inappropriately described presently as the Mount Isa Inlier. The new basin concept presented in this thesis allows for the characterisation of basin-wide structural deformation, correlation of mineralisation with particular lithostratigraphic and seismic stratigraphic packages, and the recognition of areas with petroleum exploration potential. The northern depositional margin of the Mount Isa Basin is the metamorphic, intrusive and volcanic complex here referred to as the Murphy Inlier (not the "Murphy Tectonic Ridge"). The eastern, southern and western boundaries of the basin are obscured by younger basins (Carpentaria, Eromanga and Georgina Basins). The Murphy Inlier rocks comprise the seismic basement to the Mount Isa Basin sequence. Evidence for the continuity of the Mount Isa Basin with the McArthur Basin to the northwest and the Willyama Block (Basin) at Broken Hill to the south is presented. These areas combined with several other areas of similar age are believed to have comprised the Carpentarian Superbasin (new term). The application of seismic exploration within Authority to Prospect (ATP) 423P at the northern margin of the basin was critical to the recognition and definition of the Mount Isa Basin. The Mount Isa Basin is structurally analogous to the Palaeozoic Arkoma Basin of Illinois and Arkansas in southern USA but, as with all basins it contains unique characteristics, a function of its individual development history. The Mount Isa Basin evolved in a manner similar to many well described, Phanerozoic plate tectonic driven basins. A full Wilson Cycle is recognised and a plate tectonic model proposed. The northern Mount Isa Basin is defined as the Proterozoic basin area northwest of the Mount Gordon Fault. Deposition in the northern Mount Isa Basin began with a rift sequence of volcaniclastic sediments followed by a passive margin drift phase comprising mostly carbonate rocks. Following the rift and drift phases, major north-south compression produced east-west thrusting in the south of the basin inverting the older sequences. This compression produced an asymmetric epi- or intra-cratonic clastic dominated peripheral foreland basin provenanced in the south and thinning markedly to a stable platform area (the Murphy Inlier) in the north. The fmal major deformation comprised east-west compression producing north-south aligned faults that are particularly prominent at Mount Isa. Potential field studies of the northern Mount Isa Basin, principally using magnetic data (and to a lesser extent gravity data, satellite images and aerial photographs) exhibit remarkable correlation with the reflection seismic data. The potential field data contributed significantly to the unravelling of the northern Mount Isa Basin architecture and deformation. Structurally, the Mount Isa Basin consists of three distinct regions. From the north to the south they are the Bowthorn Block, the Riversleigh Fold Zone and the Cloncurry Orogen (new names). The Bowthom Block, which is located between the Elizabeth Creek Thrust Zone and the Murphy Inlier, consists of an asymmetric wedge of volcanic, carbonate and clastic rocks. It ranges from over 10 000 m stratigraphic thickness in the south to less than 2000 min the north. The Bowthorn Block is relatively undeformed: however, it contains a series of reverse faults trending east-west that are interpreted from seismic data to be down-to-the-north normal faults that have been reactivated as thrusts. The Riversleigh Fold Zone is a folded and faulted region south of the Bowthorn Block, comprising much of the area formerly referred to as the Lawn Hill Platform. The Cloncurry Orogen consists of the area and sequences equivalent to the former Mount Isa Orogen. The name Cloncurry Orogen clearly distinguishes this area from the wider concept of the Mount Isa Basin. The South Nicholson Group and its probable correlatives, the Pilpah Sandstone and Quamby Conglomerate, comprise a later phase of now largely eroded deposits within the Mount Isa Basin. The name South Nicholson Basin is now outmoded as this terminology only applied to the South Nicholson Group unlike the original broader definition in Brown et al. (1968). Cored slimhole stratigraphic and mineral wells drilled by Amoco, Esso, Elf Aquitaine and Carpentaria Exploration prior to 1986, penetrated much of the stratigraphy and intersected both minor oil and gas shows plus excellent potential source rocks. The raw data were reinterpreted and augmented with seismic stratigraphy and source rock data from resampled mineral and petroleum stratigraphic exploration wells for this study. Since 1986, Comalco Aluminium Limited, as operator of a joint venture with Monument Resources Australia Limited and Bridge Oil Limited, recorded approximately 1000 km of reflection seismic data within the basin and drilled one conventional stratigraphic petroleum well, Beamesbrook-1. This work was the first reflection seismic and first conventional petroleum test of the northern Mount Isa Basin. When incorporated into the newly developed foreland basin and maturity models, a grass roots petroleum exploration play was recognised and this led to the present thesis. The Mount Isa Basin was seen to contain excellent source rocks coupled with potential reservoirs and all of the other essential aspects of a conventional petroleum exploration play. This play, although high risk, was commensurate with the enormous and totally untested petroleum potential of the basin. The basin was assessed for hydrocarbons in 1992 with three conventional exploration wells, Desert Creek-1, Argyle Creek-1 and Egilabria-1. These wells also tested and confrrmed the proposed basin model. No commercially viable oil or gas was encountered although evidence of its former existence was found. In addition to the petroleum exploration, indeed as a consequence of it, the association of the extensive base metal and other mineralisation in the Mount Isa Basin with hydrocarbons could not be overlooked. A comprehensive analysis of the available data suggests a link between the migration and possible generation or destruction of hydrocarbons and metal bearing fluids. Consequently, base metal exploration based on hydrocarbon exploration concepts is probably. the most effective technique in such basins. The metal-hydrocarbon-sedimentary basin-plate tectonic association (analogous to Phanerozoic models) is a compelling outcome of this work on the Palaeo- to Mesoproterozoic Mount lsa Basin. Petroleum within the Bowthom Block was apparently destroyed by hot brines that produced many ore deposits elsewhere in the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), (similar to)-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), ε-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to make nanofibres based upon cobalt oxides, a novel compound a hydrated cobalt hydroxy carbonate was formed. This compound is related to the minerals of the rosasite mineral group. X-ray diffraction showed that the formed compound was a cobalt hydroxy carbonate and SEM displayed bundles of fibres on the micron scale in length and nanoscale in width. The morphology was compared with that of the rosasite mineral group. XPS proved two bond energies for cobalt and three for oxygen in the compound. The compound was characterised by vibrational spectroscopy and the spectra related to minerals of the rosasite mineral group. The stability of the synthetic mineral was limited to temperatures below 200°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth element geochemistry in carbonate rocks is utilized increasingly for studying both modern oceans and palaeoceanography, with additional applications for investigating water–rock interactions in groundwater and carbonate diagenesis. However, the study of rare earth element geochemistry in ancient rocks requires the preservation of their distribution patterns through subsequent diagenesis. The subjects of this study, Pleistocene scleractinian coral skeletons from Windley Key, Florida, have undergone partial to complete neomorphism from aragonite to calcite in a meteoric setting; they allow direct comparison of rare earth element distributions in original coral skeleton and in neomorphic calcite. Neomorphism occurred in a vadose setting along a thin film, with degradation of organic matter playing an initial role in controlling the morphology of the diagenetic front. As expected, minor element concentrations vary significantly between skeletal aragonite and neomorphic calcite, with Sr, Ba and U decreasing in concentration and Mn increasing in concentration in the calcite, suggesting that neomorphism took place in an open system. However, rare earth elements were largely retained during neomorphism, with precipitating cements taking up excess rare earth elements released from dissolved carbonates from higher in the karst system. Preserved rare earth element patterns in the stabilized calcite closely reflect the original rare earth element patterns of the corals and associated reef carbonates. However, minor increases in light rare earth element depletion and negative Ce anomalies may reflect shallow oxidized groundwater processes, whereas decreasing light rare earth element depletion may reflect mixing of rare earth elements from associated microbialites or contamination from insoluble residues. Regardless of these minor disturbances, the results indicate that rare earth elements, unlike many minor elements, behave very conservatively during meteoric diagenesis. As the meteoric transformation of aragonite to calcite is a near worst case scenario for survival of original marine trace element distributions, this study suggests that original rare earth element patterns may commonly be preserved in ancient limestones, thus providing support for the use of ancient marine limestones as proxies for marine rare earth element geochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium minerals are important for the understanding of the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm-1 attributed CO32- ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413, 1474 cm-1 are assigned to the CO32- ν3 antisymmetric stretching modes. The CO32- ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm-1. A series of Raman bands at 708, 716, 728, 758 cm-1 are assigned to the CO32- ν2 in-plane bending mode. The Raman spectrum in the OH stretching region is characterised by bands at 3416, 3516 and 3447 cm-1. In the infrared spectrum a broad band is found at 2940 cm-1 assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm-1 are attributed to MgOH stretching modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioclastic flow deposits offshore from the Soufrie`re Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse-grained and either ungraded or poorly graded, and were deposited by non cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub-units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub-units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi-stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea-level change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This spreadsheet calculates carbonate speciation using carbonate equilibrium equations at standard conditions (T=25°C) with ionic strength corrections. The user will typically be able to calculate the different carbonate species by entering total alkalinity and pH. This spreadsheet contains additional tools to calculate the Langelier Index for calcium and the SAR of the water. Note that in this last calculation the potential for calcium precipitation is not taken into account. The last tool presented here is a carbonate speciation tool in open systems (e.g. open to the atmosphere) which takes into account atmospheric pressure.