132 resultados para Robot Soccer
em Queensland University of Technology - ePrints Archive
Resumo:
This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.
Resumo:
This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system achieves a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.
Resumo:
This paper describes Electronic Blocks, a new robot construction element designed to allow children as young as age three to build and program robotic structures. The Electronic Blocks encapsulate input, output and logic concepts in tangible elements that young children can use to create a wide variety of physical agents. The children are able to determine the behavior of these agents by the choice of blocks and the manner in which they are connected. The Electronic Blocks allow children without any knowledge of mechanical design or computer programming to create and control physically embodied robots. They facilitate the development of technological capability by enabling children to design, construct, explore and evaluate dynamic robotics systems. A study of four and five year-old children using the Electronic Blocks has demonstrated that the interface is well suited to young children. The complexity of the implementation is hidden from the children, leaving the children free to autonomously explore the functionality of the blocks. As a consequence, children are free to move their focus beyond the technology. Instead they are free to focus on the construction process, and to work on goals related to the creation of robotic behaviors and interactions. As a resource for robot building, the blocks have proved to be effective in encouraging children to create robot structures, allowing children to design and program robot behaviors.
Resumo:
The joints of a humanoid robot experience disturbances of markedly different magnitudes during the course of a walking gait. Consequently, simple feedback control techniques poorly track desired joint trajectories. This paper explores the addition of a control system inspired by the architecture of the cerebellum to improve system response. This system learns to compensate the changes in load that occur during a cycle of motion. The joint compensation scheme, called Trajectory Error Learning, augments the existing feedback control loop on a humanoid robot. The results from tests on the GuRoo platform show an improvement in system response for the system when augmented with the cerebellar compensator.
Resumo:
Since 2001 the School of Information Technology and Electrical Engineering (ITEE) at the University of Queensland has been involved in RoboCupJunior activities aimed at providing children with the Robot building and programming knowledge they need to succeed in RoboCupJunior competitions. These activities include robotics workshops, the organization of the State-wide RoboCupJunior competition, and consultation on all matters robotic with schools and government organizations. The activities initiated by ITEE have succeeded in providing children with the scaffolding necessary to become competent, independent robot builders and programmers. Results from state, national and international competitions suggest that many of the children who participate in the activities supported by ITEE are subsequently able to purpose- build robots to effectively compete in RoboCupJunior competitions. As a result of the scaffolding received within workshops children are able to think deeply and creatively about their designs, and to critique their designs in order to make the best possible creation in an effort to win.
Resumo:
The control and coordination of multiple mobile robots is a challenging task; particularly in environments with multiple, rapidly moving obstacles and agents. This paper describes a robust approach to multi-robot control, where robustness is gained from competency at every layer of robot control. The layers are: (i) a central coordination system (MAPS), (ii) an action system (AES), (iii) a navigation module, and (iv) a low level dynamic motion control system. The multi-robot coordination system assigns each robot a role and a sub-goal. Each robots action execution system then assumes the assigned role and attempts to achieve the specified sub-goal. The robots navigation system directs the robot to specific goal locations while ensuring that the robot avoids any obstacles. The motion system maps the heading and speed information from the navigation system to force-constrained motion. This multi-robot system has been extensively tested and applied in the robot soccer domain using both centralized and distributed coordination.
Resumo:
This paper describes a walking gait for a humanoid robot with a distributed control system. The motion for the robot is calculated in real time on a central controller, and sent over CAN bus to the distributed control system. The distributed control system loosely follows the motion patterns from the central controller, while also acting to maintain stability and balance. There is no global feedback control system; the system maintains its balance by the interaction between central gait and soft control of the actuators. The paper illustrates a straight line walking gait and shows the interaction between gait generation and the control system. The analysis of the data shows that successful walking can be achieved without maintaining strict local joint control, and without explicit global balance coordination.
Resumo:
Abstract - Mobile devices in the near future will need to collaborate to fulfill their function. Collaboration will be done by communication. We use a real world example of robotic soccer to come up with the necessary structures required for robotic communication. A review of related work is done and it is found no examples come close to providing a RANET. The robotic ad hoc network (RANET) we suggest uses existing structures pulled from the areas of wireless networks, peer to peer and software life-cycle management. Gaps are found in the existing structures so we describe how to extend some structures to satisfy the design. The RANET design supports robot cooperation by exchanging messages, discovering needed skills that other robots on the network may possess and the transfer of these skills. The network is built on top of a Bluetooth wireless network and uses JXTA to communicate and transfer skills. OSGi bundles form the skills that can be transferred. To test the nal design a reference implementation is done. Deficiencies in some third party software is found, specifically JXTA and JamVM and GNU Classpath. Lastly we look at how to fix the deciencies by porting the JXTA C implementation to the target robotic platform and potentially eliminating the TCP/IP layer, using UDP instead of TCP or using an adaptive TCP/IP stack. We also propose a future areas of investigation; how to seed the configuration for the Personal area network (PAN) Bluetooth protocol extension so a Bluetooth TCP/IP link is more quickly formed and using the STP to allow multi-hop messaging and transfer of skills.
Resumo:
An adaptive agent improves its performance by learning from experience. This paper describes an approach to adaptation based on modelling dynamic elements of the environment in order to make predictions of likely future state. This approach is akin to an elite sports player being able to “read the play”, allowing for decisions to be made based on predictions of likely future outcomes. Modelling of the agent‟s likely future state is performed using Markov Chains and a technique called “Motion and Occupancy Grids”. The experiments in this paper compare the performance of the planning system with and without the use of this predictive model. The results of the study demonstrate a surprising decrease in performance when using the predictions of agent occupancy. The results are derived from statistical analysis of the agent‟s performance in a high fidelity simulation of a world leading real robot soccer team.
Resumo:
This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup).