832 resultados para Road Model
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.
Resumo:
Road and highway infrastructure provides the backbone for a nation's economic growth. The versatile dispersion of population in Australia, from sparsely settled communities in remote areas to regenerated inner city suburbs with high density living in metropolitans, calls for continuing development and improvement on roads infrastructure under the current federal government policies and state governments' strategic plans. As road infrastructure projects involve large resources and mechanism, achieving sustainability not only in economic scales but also through environmental and social responsibility becomes a crucial issue. Current efforts are often impeded by different interpretation on sustainability agenda by stakeholders involved in these types of projects. As a result, sustainability deliverables at the project level is not often as transparent and measurable, compared to promises in project briefs and designs. This paper reviews the past studies on sustainable infrastructure construction, focusing on roads and highway projects. Through literature study and consultation with the industry, key sustainability indicators specific to road infrastructure projects have been identified. Based on these findings, this paper introduces an on-going research project aimed at identifying and integrating the different perceptions and priority needs of the stakeholders, and issues that impact on the gap between sustainability foci and its actual realization at project end level. The exploration helps generate an integrated decision-making model for sustainable road infrastructure projects. The research will promote to the industry more systematic and integrated approaches to decision-making on the implementation of sustainability strategies to achieve deliverable goals throughout the development and delivery process of road infrastructure projects in Australia.
Resumo:
With increasing pressure to provide environmentally responsible infrastructure products and services, stakeholders are putting significant foci on the early identification of financial viability and outcome of infrastructure projects. Traditionally, there has been an imbalance between sustainable measures and project budget. On one hand, the industry tends to employ the first-cost mentality and approach to developing infrastructure projects. On the other, environmental experts and technology innovators often push for the ultimately green products and systems without much of a concern for cost. This situation is being quickly changed as the industry is under pressure to continue to return profit, while better adapting to current and emerging global issues of sustainability. For the infrastructure sector to contribute to sustainable development, it will need to increase value and efficiency. Thus, there is a great need for tools that will enable decision makers evaluate competing initiatives and identify the most sustainable approaches to procuring infrastructure projects. In order to ensure that these objectives are achieved, the concept of life-cycle costing analysis (LCCA) will play significant roles in the economics of an infrastructure project. Recently, a few research initiatives have applied the LCCA models for road infrastructure that focused on the traditional economics of a project. There is little coverage of life-cycle costing as a method to evaluate the criteria and assess the economic implications of pursuing sustainability in road infrastructure projects. To rectify this problem, this paper reviews the theoretical basis of previous LCCA models before discussing their inability to determinate the sustainability indicators in road infrastructure project. It then introduces an on-going research aimed at developing a new model to integrate the various new cost elements based on the sustainability indicators with the traditional and proven LCCA approach. It is expected that the research will generate a working model for sustainability based life-cycle cost analysis.
Resumo:
A road traffic noise prediction model (ASJ MODEL-1998) has been integrated with a road traffic simulator (AVENUE) to produce the Dynamic areawide Road traffic NoisE simulator-DRONE. This traffic-noise-GIS based integrated tool is upgraded to predict noise levels in built-up areas. The integration of traffic simulation with a noise model provides dynamic access to traffic flow characteristics and hence automated and detailed predictions of traffic noise. The prediction is not only on the spatial scale but also on temporal scale. The linkage with GIS gives a visual representation to noise pollution in the form of dynamic areawide traffic noise contour maps. The application of DRONE on a real world built-up area is also presented.
Resumo:
A combined specular reflection and diffusion model using the radiosity technique was developed to calculate road traffic noise level on residential balconies. The model is capable of numerous geometrical configurations for a single balcony situated in the centre of a street canyon. The geometry of the balcony and the street can be altered with width,length and height. The model was used to calculate for three different geometrical and acoustic absorption characteristics for a balcony. The calculated results are presented in this paper.
Resumo:
Preservation and enhancement of transportation infrastructure is critical to continuous economic development in Australia. Of particular importance are the road assets infrastructure, due to their high costs of setting up and their social and economic impact on the national economy. Continuous availability of road assets, however, is contingent upon their effective design, condition monitoring, maintenance, and renovation and upgrading. However, in order to achieve this data exchange, integration, and interoperability is required across municipal boundaries. On the other hand, there are no agreed reference frameworks that consistently describe road infrastructure assets. As a consequence, specifications and technical solutions being chosen to manage road assets do not provide adequate detail and quality of information to support asset lifecycle management processes and decisions taken are based on perception not reality. This paper presents a road asset information model, which works as reference framework to, link other kinds of information with asset information; integrate different data suppliers; and provide a foundation for service driven integrated information framework for community infrastructure and asset management.
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
Several significant studies have been made in recent decades toward understanding road traffic noise and its effects on residential balconies. These previous studies have used a variety of techniques such as theoretical models, scale models and measurements on real balconies. The studies have considered either road traffic noise levels within the balcony space or inside an adjacent habitable room or both. Previous theoretical models have used, for example, simplified specular reflection calculations, boundary element methods (BEM), adaptations of CoRTN or the use of Sabine Theory. This paper presents an alternative theoretical model to predict the effects of road traffic noise spatially within the balcony space. The model includes a specular reflection component by calculating up to 10 orders of source images. To account for diffusion effects, a two compartment radiosity component is utilised. The first radiosity compartment is the urban street, represented as a street with building facades on either side. The second radiosity compartment is the balcony space. The model is designed to calculate the predicted road traffic noise levels within the balcony space and is capable of establishing the effect of changing street and balcony geometries. Screening attenuation algorithms are included to determine the effects of solid balcony parapets and balcony ceiling shields.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement and vehicle redirectionality. Actual PWFB test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many was done pertaining to PWFB. This research probes a new technique to model joints in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
Objectives Self-regulation refers to the practice of using self-imposed restrictions to protect oneself from situations that are, or are perceived to be, unsafe. Within the driving context, self-regulation refers the compensatory practices that some older adults adopt to restrict their driving to situations in which they feel safe. However, the way in which demographic, functional, and psychosocial factors, and the interactions between these factors, influence older adults’ driving self-regulation is not well understood. Improving this understanding could lead to new ways of considering the mobility concerns faced by older drivers. Method A systematic review of the current literature was conducted to explore this issue. Twenty-nine empirical studies investigating the factors associated with older adults’ self-regulatory driving behaviors were examined. Results The review findings were used to construct the Multilevel Older Persons Transportation and Road Safety (MOTRS) model. The MOTRS model proposes that individual and environmental factors such as age, gender, and the availability of alternative transportation predict older adults’ practice of driving-related self-regulation. However, these variables influence self-regulation through psychosocial variables such as driving confidence, affective attitude, and instrumental attitude toward driving. Discussions The MOTRS model extends previous attempts to model older adults’ driving by focusing on a novel target, driving self-regulation, and by including a wider range of predictors identified on the basis of the systematic literature review. This focus enables consideration of broader mobility issues and may inform new strategies to support the mobility of older adults.
Resumo:
Assessment and prediction of the impact of vehicular traffic emissions on air quality and exposure levels requires knowledge of vehicle emission factors. The aim of this study was quantification of emission factors from an on road, over twelve months measurement program conducted at two sites in Brisbane: 1) freeway type (free flowing traffic at about 100 km/h, fleet dominated by small passenger cars - Tora St); and 2) urban busy road with stop/start traffic mode, fleet comprising a significant fraction of heavy duty vehicles - Ipswich Rd. A physical model linking concentrations measured at the road for specific meteorological conditions with motor vehicle emission factors was applied for data analyses. The focus of the study was on submicrometer particles; however the measurements also included supermicrometer particles, PM2.5, carbon monoxide, sulfur dioxide, oxides of nitrogen. The results of the study are summarised in this paper. In particular, the emission factors for submicrometer particles were 6.08 x 1013 and 5.15 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd respectively and for supermicrometer particles for Tora St, 1.48 x 109 particles per vehicle-1 km-1. Emission factors of diesel vehicles at both sites were about an order of magnitude higher than emissions from gasoline powered vehicles. For submicrometer particles and gasoline vehicles the emission factors were 6.08 x 1013 and 4.34 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively, and for diesel vehicles were 5.35 x 1014 and 2.03 x 1014 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively. For supermicrometer particles at Tora St the emission factors were 2.59 x 109 and 1.53 x 1012 particles per vehicle-1 km-1, for gasoline and diesel vehicles, respectively.
Resumo:
This document provides the findings of an international review of investment decision-making practices in road asset management. Efforts were concentrated on identifying the strategic objectives of agencies in road asset management, establishing and understanding criteria different organisations adopted and ascertaining the exact methodologies used by different countries and international organisations. Road assets are powerful drivers of economic development and social equity. They also have significant impacts on the natural and man-made environment. The traditional definition of asset management is “A systematic process of maintaining, upgrading and operating physical assets cost effectively. It combines engineering principles with sound business practices and economic theory and it provides tools to facilitate a more organised, logical approach to decision-making” (US Dept. of Transportation, 1999). In recent years, the concept has been broadened to cover the complexity of decision making, based on a wider variety of policy considerations as well as social and environmental issues rather than is covered by Benefit-Cost analysis and pure technical considerations. Current international practices are summarised in table 2. It was evident that Engineering-economic analysis methods are well advanced to support decision-making. A range of tools available supports performance predicting of road assets and associated cost/benefit in technical context. The need for considering triple plus one bottom line of social, environmental and economic as well as political factors in decision-making is well understood by road agencies around the world. The techniques used to incorporate these however, are limited. Most countries adopt a scoring method, a goal achievement matrix or information collected from surveys. The greater uncertainty associated with these non-quantitative factors has generally not been taken into consideration. There is a gap between the capacities of the decision-making support systems and the requirements from decision-makers to make more rational and transparent decisions. The challenges faced in developing an integrated decision making framework are both procedural and conceptual. In operational terms, the framework should be easy to be understood and employed. In philosophical terms, the framework should be able to deal with challenging issues, such as uncertainty, time frame, network effects, model changes, while integrating cost and non-cost values into the evaluation. The choice of evaluation techniques depends on the feature of the problem at hand, on the aims of the analysis, and on the underlying information base At different management levels, the complexity in considering social, environmental, economic and political factor in decision-making is different. At higher the strategic planning level, more non-cost factors are involved. The complexity also varies based on the scope of the investment proposals. Road agencies traditionally place less emphasis on evaluation of maintenance works. In some cases, social equity, safety, environmental issues have been used in maintenance project selection. However, there is not a common base for the applications.