887 resultados para River health
em Queensland University of Technology - ePrints Archive
Resumo:
Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).
Resumo:
1. The ability of many introduced fish species to thrive in degraded aquatic habitats and their potential to impact on aquatic ecosystem structure and function suggest that introduced fish may represent both a symptom and a cause of decline in river health and the integrity of native aquatic communities. 2. The varying sensitivities of many commonly introduced fish species to degraded stream conditions, the mechanism and reason for their introduction and the differential susceptibility of local stream habitats to invasion because of the environmental and biological characteristics of the receiving water body, are all confounding factors that may obscure the interpretation of patterns of introduced fish species distribution and abundance and therefore their reliability as indicators of river health. 3. In the present study, we address the question of whether alien fish (i.e. those species introduced from other countries) are a reliable indicator of the health of streams and rivers in south-eastern Queensland, Australia. We examine the relationships of alien fish species distributions and indices of abundance and biomass with the natural environmental features, the biotic characteristics of the local native fish assemblages and indicators of anthropogenic disturbance at a large number of sites subject to varying sources and intensities of human impact. 4. Alien fish species were found to be widespread and often abundant in south-eastern Queensland rivers and streams, and the five species collected were considered to be relatively tolerant to river degradation, making them good candidate indicators of river health. Variation in alien species indices was unrelated to the size of the study sites, the sampling effort expended or natural environmental gradients. The biological resistance of the native fish fauna was not concluded to be an important factor mediating invasion success by alien species. Variation in alien fish indices was, however, strongly related to indicators of disturbance intensity describing local in-stream habitat and riparian degradation, water quality and surrounding land use, particularly the amount of urban development in the catchment. 5. Potential confounding factors that may influence the likelihood of introduction and successful establishment of an alien species and the implications of these factors for river bioassessment are discussed. We conclude that the potentially strong impact that many alien fish species can have on the biological integrity of natural aquatic ecosystems, together with their potential to be used as an initial basis to find out other forms of human disturbance impacts, suggest that some alien species (particularly species from the family Poeciliidae) can represent a reliable 'first cut' indicator of river health.
Resumo:
To complement physical measures or indices of river health a social benchmarking instrument has been developed to measure community dispositions and behaviour regarding river health. This instrument seeks to achieve three outcomes. First, to provide a benchmark of the social condition of communities’ attitudes, values, understanding and behaviours in relation to river health; second, to provide information for developing management and educational priorities; and third, to provide an assessment of the long-term effectiveness of community education and engagement activities in achieving changes in attitudes, understanding and behaviours in relation to river health. In this paper the development of the social benchmarking instrument is described and results are presented from the first state-wide benchmark study in Victoria, Australia, in which the social dimensions of river health, community behaviours related to rivers, and community understanding of human impacts on rivers were assessed.
Resumo:
Victorians feel a strong connection to their local waterways and most have a good grasp of river health issues. The My Victorian Waterway report analyses how Victorians interact with their local waterways including rivers, lakes and estuaries. The report is based on the results of a survey completed by more than 7,000 Victorians who answered questions about how they use and care for their local waterways as well as their knowledge of river health issues and aspirations for the future of our waterways.
Resumo:
Protocols for bioassessment often relate changes in summary metrics that describe aspects of biotic assemblage structure and function to environmental stress. Biotic assessment using multimetric indices now forms the basis for setting regulatory standards for stream quality and a range of other goals related to water resource management in the USA and elsewhere. Biotic metrics are typically interpreted with reference to the expected natural state to evaluate whether a site is degraded. It is critical that natural variation in biotic metrics along environmental gradients is adequately accounted for, in order to quantify human disturbance-induced change. A common approach used in the IBI is to examine scatter plots of variation in a given metric along a single stream size surrogate and a fit a line (drawn by eye) to form the upper bound, and hence define the maximum likely value of a given metric in a site of a given environmental characteristic (termed the 'maximum species richness line' - MSRL). In this paper we examine whether the use of a single environmental descriptor and the MSRL is appropriate for defining the reference condition for a biotic metric (fish species richness) and for detecting human disturbance gradients in rivers of south-eastern Queensland, Australia. We compare the accuracy and precision of the MSRL approach based on single environmental predictors, with three regression-based prediction methods (Simple Linear Regression, Generalised Linear Modelling and Regression Tree modelling) that use (either singly or in combination) a set of landscape and local scale environmental variables as predictors of species richness. We compared the frequency of classification errors from each method against set biocriteria and contrast the ability of each method to accurately reflect human disturbance gradients at a large set of test sites. The results of this study suggest that the MSRL based upon variation in a single environmental descriptor could not accurately predict species richness at minimally disturbed sites when compared with SLR's based on equivalent environmental variables. Regression-based modelling incorporating multiple environmental variables as predictors more accurately explained natural variation in species richness than did simple models using single environmental predictors. Prediction error arising from the MSRL was substantially higher than for the regression methods and led to an increased frequency of Type I errors (incorrectly classing a site as disturbed). We suggest that problems with the MSRL arise from the inherent scoring procedure used and that it is limited to predicting variation in the dependent variable along a single environmental gradient.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
1. Stream ecosystem health monitoring and reporting need to be developed in the context of an adaptive process that is clearly linked to identified values and objectives, is informed by rigorous science, guides management actions and is responsive to changing perceptions and values of stakeholders. To be effective, monitoring programmes also need to be underpinned by an understanding of the probable causal factors that influence the condition or health of important environmental assets and values. This is often difficult in stream and river ecosystems where multiple stressors, acting at different spatial and temporal scales, interact to affect water quality, biodiversity and ecosystem processes. 2. In this article, we describe the development of a freshwater monitoring programme in South East Queensland, Australia, and how this has been used to report on ecosystem health at a regional scale and to guide investments in catchment protection and rehabilitation. We also discuss some of the emerging science needs to identify the appropriate scale and spatial arrangement of rehabilitation to maximise river ecosystem health outcomes and, at the same time, derive other benefits downstream. 3. An objective process was used to identify potential indicators of stream ecosystem health and then test these across a known catchment land-use disturbance gradient. From the 75 indicators initially tested, 22 from five indicator groups (water quality, ecosystem metabolism, nutrient cycling, invertebrates and fish) responded strongly to the disturbance gradient, and 16 were subsequently recommended for inclusion in the monitoring programme. The freshwater monitoring programme was implemented in 2002, funded by local and State government authorities, and currently involves the assessment of over 120 sites, twice per year. This information, together with data from a similar programme on the region's estuarine and coastal marine waters, forms the basis of an annual report card that is presented in a public ceremony to local politicians and the broader community. 4. Several key lessons from the SEQ Healthy Waterways Programme are likely to be transferable to other regional programmes aimed at improving aquatic ecosystem health, including the importance of a shared common vision, the involvement of committed individuals, a cooperative approach, the need for defensible science and effective communication. 5. Thematic implications: this study highlights the use of conceptual models and objective testing of potential indicators against a known disturbance gradient to develop a freshwater ecosystem health monitoring programme that can diagnose the probable causes of degradation from multiple stressors and identify the appropriate spatial scale for rehabilitation or protection. This approach can lead to more targeted management investments in catchment protection and rehabilitation, greater public confidence that limited funds are being well spent and better outcomes for stream and river ecosystem health.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
The spatial and temporal variations of Ross River virus infections reported in Queensland, Australia, between 1985 and 1996 were studied by using the Geographic Information System. The notified cases of Ross River virus infection came from 489 localities between 1985 and 1988, 805 between 1989 and 1992, and 1,157 between 1993 and 1996 (chi2(df = 2) = 680.9; P < 0.001). There was a marked increase in the number of localities where the cases were reported by 65 percent for the period of 1989-1992 and 137 percent for 1993-1996, compared with that for 1985-1988. The geographic distribution of the notified Ross River virus cases has expanded in Queensland over recent years. As Ross River virus disease has impacted considerably on tourism and industry, as well as on residents of affected areas, more research is required to explore the causes of the geographic expansion of the notified Ross River virus infections.
Resumo:
We used geographic information systems and a spatial analysis approach to explore the pattern of Ross River virus (RRV) incidence in Brisbane, Australia. Climate, vegetation and socioeconomic data in 2001 were obtained from the Australian Bureau of Meteorology, the Brisbane City Council and the Australian Bureau of Statistics, respectively. Information on the RRV cases was obtained from the Queensland Department of Health. Spatial and multiple negative binomial regression models were used to identify the socioeconomic and environmental determinants of RRV transmission. The results show that RRV activity was primarily concentrated in the northeastern, northwestern, and southeastern regions in Brisbane. Multiple negative binomial regression models showed that the spatial pattern of RRV disease in Brisbane seemed to be determined by a combination of local ecologic, socioeconomic, and environmental factors.
Resumo:
Structural Health Monitoring (SHM) is defined as the use of on-structure sensing system to monitor the performance of the structure and evaluate its health state. Recent bridge failures, such as the collapses of the 1-35W Highway Bridge in USA, the collapse of the Can Tho Bridge in Vietnam and the Xijiang River Bridge in the Mainland China, all of which happened in the year 2007, have alerted the importance of structural health monitoring. This book presents a background of SHM technologies together with its latest development and successful applications. It is a book launched to celebrate the establishment of the Australian Network of Structural Health Monitoring (ANSHM). The network comprising leading SHM experts in Australia promotes and advances SHM research, application, education and development in Australia.
Resumo:
This study examined the distribution of major mosquito species and their roles in the transmission of Ross River virus (RRV) infection for coastline and inland areas in Brisbane, Australia (27°28′ S, 153°2′ E). We obtained data on the monthly counts of RRV cases in Brisbane between November 1998 and December 2001 by statistical local areas from the Queensland Department of Health and the monthly mosquito abundance from the Brisbane City Council. Correlation analysis was used to assess the pairwise relationships between mosquito density and the incidence of RRV disease. This study showed that the mosquito abundance of Aedes vigilax (Skuse), Culex annulirostris (Skuse), and Aedes vittiger (Skuse) were significantly associated with the monthly incidence of RRV in the coastline area, whereas Aedes vigilax, Culex annulirostris, and Aedes notoscriptus (Skuse) were significantly associated with the monthly incidence of RRV in the inland area. The results of the classification and regression tree (CART) analysis show that both occurrence and incidence of RRV were influenced by interactions between species in both coastal and inland regions. We found that there was an 89% chance for an occurrence of RRV if the abundance of Ae. vigifax was between 64 and 90 in the coastline region. There was an 80% chance for an occurrence of RRV if the density of Cx. annulirostris was between 53 and 74 in the inland area. The results of this study may have applications as a decision support tool in planning disease control of RRV and other mosquito-borne diseases.