558 resultados para Retinal ganglion cell
em Queensland University of Technology - ePrints Archive
Resumo:
Recently discovered intrinsically photosensitive melanopsin retinal ganglion cells contribute to the maintenance of pupil diameter, recovery and post-illumination components of the pupillary light reflex and provide the primary environmental light input to the suprachiasmatic nucleus for photoentrainment of the circadian rhythm. This review summarises recent progress in understanding intrinsically photosensitive ganglion cell histology and physiological properties in the context of their contribution to the pupillary and circadian functions and introduces a clinical framework for using the pupillary light reflex to evaluate inner retinal (intrinsically photosensitive melanopsin ganglion cell) and outer retinal (rod and cone photoreceptor) function in the detection of retinal eye disease.
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGCs) in the eye transmit the environmental light level, projecting to the suprachiasmatic nucleus (SCN) (Berson, Dunn & Takao, 2002; Hattar, Liao, Takao, Berson & Yau, 2002), the location of the circadian biological clock, and the olivary pretectal nucleus (OPN) of the pretectum, the start of the pupil reflex pathway (Hattar, Liao, Takao, Berson & Yau, 2002; Dacey, Liao, Peterson, Robinson, Smith, Pokorny, Yau & Gamlin, 2005). The SCN synchronizes the circadian rhythm, a cycle of biological processes coordinated to the solar day, and drives the sleep/wake cycle by controlling the release of melatonin from the pineal gland (Claustrat, Brun & Chazot, 2005). Encoded photic input from ipRGCs to the OPN also contributes to the pupil light reflex (PLR), the constriction and recovery of the pupil in response to light. IpRGCs control the post-illumination component of the PLR, the partial pupil constriction maintained for > 30 sec after a stimulus offset (Gamlin, McDougal, Pokorny, Smith, Yau & Dacey, 2007; Kankipati, Girkin & Gamlin, 2010; Markwell, Feigl & Zele, 2010). It is unknown if intrinsic ipRGC and cone-mediated inputs to ipRGCs show circadian variation in their photon-counting activity under constant illumination. If ipRGCs demonstrate circadian variation of the pupil response under constant illumination in vivo, when in vitro ipRGC activity does not (Weng, Wong & Berson, 2009), this would support central control of the ipRGC circadian activity. A preliminary experiment was conducted to determine the spectral sensitivity of the ipRGC post-illumination pupil response under the experimental conditions, confirming the successful isolation of the ipRGC response (Gamlin, et al., 2007) for the circadian experiment. In this main experiment, we demonstrate that ipRGC photon-counting activity has a circadian rhythm under constant experimental conditions, while direct rod and cone contributions to the PLR do not. Intrinsic ipRGC contributions to the post-illumination pupil response decreased 2:46 h prior to melatonin onset for our group model, with the peak ipRGC attenuation occurring 1:25 h after melatonin onset. Our results suggest a centrally controlled evening decrease in ipRGC activity, independent of environmental light, which is temporally synchronized (demonstrates a temporal phase-advanced relationship) to the SCN mediated release of melatonin. In the future the ipRGC post-illumination pupil response could be developed as a fast, non-invasive measure of circadian rhythm. This study establishes a basis for future investigation of cortical feedback mechanisms that modulate ipRGC activity.
Resumo:
Purpose: IpRGCs mediate non-image forming functions including photoentrainment and the pupil light reflex (PLR). Temporal summation increases visual sensitivity and decreases temporal resolution for image forming vision, but the summation properties of nonimage forming vision are unknown. We investigated the temporal summation of inner (ipRGC) and outer (rod/cone) retinal inputs to the PLR. Method: The consensual PLR of the left eye was measured in six participants with normal vision using a Maxwellian view infrared pupillometer. Temporal summation was investigated using a double-pulse protocol (100 ms stimulus pairs; 0–1024 ms inter-stimulus interval, ISI) presented to the dilated fellow right eye (Tropicamide 1%). Stimulus lights (blue λmax = 460 nm; red λmax = 638 nm) biased activity to inneror outer retinal inputs to non-image forming vision. Temporal summation was measured suprathreshold (15.2 log photons.cm−2.s−1 at the cornea) and subthreshold (11.4 log photons.cm−2.s−1 at the cornea). Results: RM-ANOVAs showed the suprathreshold and subthreshold 6 second post illumination pupil response (PIPR: expressed as percentage baseline diameter) did not significantly vary for red or blue stimuli (p > .05). The PIPR for a subthreshold red 16 ms double-pulse control condition did not significantly differ with ISI (p > .05). The maximum constriction amplitude for red and blue 100 ms double- pulse stimuli did not significantly vary with ISI (p > .05). Conclusion: The non-significant changes in suprathreshold PIPR and subthreshold maximum pupil constriction indicate that inner retinal ipRGC inputs and outer retinal photoreceptor inputs to the PLR do not show temporal summation. The results suggest a fundamental difference between the temporal summation characteristics of image forming and non-image forming vision.
Resumo:
Purpose: This study investigates the clinical utility of the melanopsin expressing intrinsically photosensitive retinal ganglion cell (ipRGC) controlled post-illumination pupil response (PIPR) as a novel technique for documenting inner retinal function in patients with Type II diabetes without diabetic retinopathy. Methods: The post-illumination pupil response (PIPR) was measured in seven patients with Type II diabetes, normal retinal nerve fiber thickness and no diabetic retinopathy. A 488 nm and 610 nm, 7.15º diameter stimulus was presented in Maxwellian view to the right eye and the left consensual pupil light reflex was recorded. Results: The group data for the blue PIPR (488 nm) identified a trend of reduced ipRGC function in patients with diabetes with no retinopathy. The transient pupil constriction was lower on average in the diabetic group. The relationship between duration of diabetes and the blue PIPR amplitude was linear, suggesting that ipRGC function decreases with increasing diabetes duration. Conclusion: This is the first report to show that the ipRGC controlled post-illumination pupil response may have clinical applications as a non-invasive technique for determining progression of inner neuroretinal changes in patients with diabetes before they are ophthalmoscopically or anatomically evident. The lower transient pupil constriction amplitude indicates that outer retinal photoreceptor inputs to the pupil light reflex may also be affected in diabetes.
Resumo:
Purpose The post-illumination pupil response (PIPR) has been quantified in the literature by four metrics. The spectral sensitivity of only one metric is known and this study quantifies the other three. To optimize the measurement of the PIPR in humans, we also determine the stimulus protocol producing the largest PIPR, the duration of the PIPR, and the metric(s) with the lowest coefficient of variation. Methods The consensual pupil light reflex (PLR) was measured with a Maxwellian view pupillometer (35.6° diameter stimulus). - Experiment 1: Spectral sensitivity of four PIPR metrics [plateau, 6 s, area under curve (AUC) early and late recovery] was determined from a criterion PIPR (n = 2 participants) to a 1 s pulse at five wavelengths (409-592nm) and fitted with Vitamin A nomogram (ƛmax = 482 nm). - Experiment 2: The PLR was measured in five healthy participants [29 to 42 years (mean = 32.6 years)] as a function of three stimulus durations (1 s, 10 s, 30 s), five irradiances spanning low to high melanopsin excitation levels (retinal irradiance: 9.8 to 14.8 log quanta.cm-2.s-1), and two wavelengths, one with high (465 nm) and one with low (637 nm) melanopsin excitation. Intra and inter-individual coefficients of variation (CV) were calculated. Results The melanopsin (opn4) photopigment nomogram adequately described the spectral sensitivity derived from all four PIPR metrics. The largest PIPR amplitude was observed with 1 s short wavelength pulses (retinal irradiance ≥ 12.8 log quanta.cm-2.s-1). Of the 4 PIPR metrics, the plateau and 6 s PIPR showed the least intra and inter-individual CV (≤ 0.2). The maximum duration of the sustained PIPR was 83.4 ± 48.0 s (mean ± SD) for 1 s pulses and 180.1 ± 106.2 s for 30 s pulses (465 nm; 14.8 log quanta.cm-2.s-1). Conclusions All current PIPR metrics provide a direct measure of intrinsic melanopsin retinal ganglion cell function. To measure progressive changes in melanopsin function in disease, we recommend that the intrinsic melanopsin response should be measured using a 1 s pulse with high melanopsin excitation and the PIPR should be analyzed with the plateau and/or 6 s metrics. That the PIPR can have a sustained constriction for as long as 3 minutes, our PIPR duration data provide a baseline for the selection of inter-stimulus intervals between consecutive pupil testing sequences.
Resumo:
PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) are a class of photoreceptors with established roles in non-image forming processes. Their contributions to image forming vision may include the estimation of brightness. Animal models have been central for understanding the physiological mechanisms of ipRGC function and there is evidence of conservation of function across species. ipRGCs can be divided into 5 ganglion cell subtypes that show morphological and functional diversity. Research in humans has established that ipRGCs signal environmental irradiance to entrain the central body clock to the solar day for regulating circadian processes and sleep. In addition, ipRGCs mediate the pupil light reflex (PLR), making the PLR a readily accessible behavioural marker of ipRGC activity. Less is known about ipRGC function in retinal and optic nerve disease, with emerging research providing insight into their function in diabetes, retinitis pigmentosa, glaucoma and hereditary optic neuropathy. We briefly review the anatomical distributions, projections and basic physiological mechanisms of ipRGCs, their proposed and known functions in animals and humans with and without eye disease. We introduce a paradigm for differentiating inner and outer retinal inputs to the pupillary control pathway in retinal disease and apply this paradigm to patients with age-related macular degeneration (AMD). In these cases of patients with AMD, we provide the initial evidence that ipRGC function is altered, and that the dysfunction is more pronounced in advanced disease. Our perspective is that with refined pupillometry paradigms, the pupil light reflex can be extended to AMD assessment as a tool for the measurement of inner and outer retinal dysfunction.
Resumo:
Purpose Melanopsin-expressing retinal ganglion cells (mRGCs) have non-image forming functions including mediation of the pupil light reflex (PLR). There is limited knowledge about mRGC function in retinal disease. Initial retinal changes in age-related macular degeneration (AMD) occur in the paracentral region where mRGCs have their highest density, making them vulnerable during disease onset. In this cross-sectional clinical study, we measured the PLR to determine if mRGC function is altered in early stages of macular degeneration. Methods Pupil responses were measured in 8 early AMD patients (AREDS 2001 classification; mean age 72.6 ± 7.2 years, 5M, and 3F) and 12 healthy control participants (mean age 66.6 ± 6.1 years, 8M and 4F) using a custom-built Maxwellian-view pupillometer. Stimuli were 0.5 Hz sinewaves (10 s duration, 35.6° diameter) of short wavelength light (464nm, blue; retinal irradiance = 14.5 log quanta.cm-2.s-1) to produce high melanopsin excitation and of long wavelength light (638nm, red; retinal irradiance = 14.9 log quanta.cm-2.s-1), to bias activation to outer retina and provide a control. Baseline pupil diameter was determined during a 10 s pre-stimulus period. The post illumination pupil response (PIPR) was recorded for 40 s. The 6 s PIPR and maximum pupil constriction were expressed as percentage baseline (M ± SD). Results The blue PIPR was significantly less sustained (p<0.01) in the early AMD group (75.49 ± 7.88%) than the control group (58.28 ± 9.05%). The red PIPR was not significantly different (p>0.05) between the early AMD (84.79 ± 4.03%) and control groups (82.01 ± 5.86%). Maximum constriction amplitude in the early AMD group for blue (43.67 ± 6.35%) and red (48.64 ± 6.49%) stimuli were not significantly different to the control group for blue (39.94 ± 3.66%) and red (44.98 ± 3.15%) stimuli (p>0.05). Conclusions These results are suggestive of inner retinal mRGC deficits in early AMD. This non-invasive, objective measure of pupil responses may provide a new method for quantifying mRGC function and monitoring AMD progression.
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or intrinsic (retinal) network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18–30 years) with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux). Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO) was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells mediate this circadian variation.
Resumo:
Purpose: In animal models hemi-field deprivation results in localised, graded vitreous chamber elongation and presumably deprivation induced localised changes in retinal processing. The aim of this research was to determine if there are variations in ERG responses across the retina in normal chick eyes and to examine the effect of hemi-field and full-field deprivation on ERG responses across the retina and at earlier times than have previously been examined electrophysiologically. Methods: Chicks were either untreated, wore monocular full-diffusers or half-diffusers (depriving nasal retina) (n = 6-8 each group) from day 8. mfERG responses were measured using the VERIS mfERG system across the central 18.2º× 16.7º (H × V) field. The stimulus consisted of 61 unscaled hexagons with each hexagon modulated between black and white according to a pseudorandom binary m-sequence. The mfERG was measured on day 12 in untreated chicks, following 4 days of hemi-field diffuser wear, and 2, 48 and 96 h after application of full-field diffusers. Results: The ERG response of untreated chick eyes did not vary across the measured field; there was no effect of retinal location on the N1-P1 amplitude (p = 0.108) or on P1 implicit time (p > 0.05). This finding is consistent with retinal ganglion cell density of the chick varying by only a factor of two across the entire retina. Half-diffusers produced a ramped retina and a graded effect of negative lens correction (p < 0.0001); changes in retinal processing were localized. The untreated retina showed increasing complexity of the ERG waveform with development; form-deprivation prevented the increasing complexity of the response at the 2, 48 and 96 h measurement times and produced alterations in response timing. Conclusions: Form-deprivation and its concomitant loss of image contrast and high spatial frequency images prevented development of the ERG responses, consistent with a disruption of development of retinal feedback systems. The characterisation of ERG responses in normal and deprived chick eyes across the retina allows the assessment of concurrent visual and retinal manipulations in this model. (Ophthalmic & Physiological Optics © 2013 The College of Optometrists.)
Resumo:
Purpose To determine whether melanopsin expressing intrinsically photosensitive Retinal Ganglion Cell (ipRGC) inputs to the pupil light reflex (PLR) are affected in early age-related macular degeneration (AMD). Methods The PLR was measured in 40 participants (20 early AMD and 20 age-matched controls) using a custom-built Maxwellian-view pupillometer. Sinusoidal stimuli (0.5 Hz, 11.9 s duration, 35.6° diameter) were presented to the study eye and the consensual pupil response was measured for stimuli with high melanopsin excitation (464nm; blue) and with low melanopsin excitation (638 nm; red) that biased activation to the outer retina. Two melanopsin PLR metrics were quantified: the Phase Amplitude Percentage (PAP) during the sinusoidal stimulus presentation and the Post-Illumination Pupil Response (PIPR). The PLR during stimulus presentation was analyzed using latency to constriction, transient pupil response and maximum pupil constriction metrics. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curves. Results The blue PIPR was significantly less sustained in the early AMD group (p<0.001). The red PIPR was not significantly different between groups (p>0.05). The PAP and blue stimulus constriction amplitude were significantly lower in the early AMD group (p < 0.05). There was no significant difference between groups in the latency or transient amplitude for both stimuli (p>0.05). ROC analysis showed excellent diagnostic accuracy for the blue PIPR metrics (AUC>0.9). Conclusions This is the initial report that the melanopsin controlled PIPR is dysfunctional in early AMD. The non-invasive, objective measurement of the ipRGC controlled PIPR has excellent diagnostic accuracy for early AMD.
Resumo:
Using retinal imaging, the nature and extent of compromise of retinal structural integrity has been characterized in individuals suffering from diabetic peripheral neuropathy. These findings extend our understanding of the pathological processes involved in diabetic neuropathy and offer novel ophthalmic approaches to the diagnosis and monitoring of this debilitating condition.
Resumo:
Aim Retinal tissue integrity in relation to diabetic neuropathy is not known. The aim of this study was to investigate retinal tissue thickness in relation to diabetic peripheral neuropathy (DPN) with and without diabetic retinopathy (DR). Methods Full retinal thickness at the parafoveal and perifoveal macula and neuro-retinal thickness around the optic nerve head (ONH) and at the macula was examined using spectral domain optical coherence tomography. The eye on the hand-dominant side of 85 individuals with type 1 diabetes and 66 individuals with type 2 diabetes, with or without DR and DPN, were compared to the eyes (n=45) of age-matched non-diabetic controls. Diabetic neuropathy was defined as Neuropathy Disability Score (NDS) ≥3 on a scale of 0-10. A general linear model was used to examine the relationship between diabetic neuropathy and foveal, parafoveal and perifoveal retinal thickness and neuro-retinal thickness, in relation to DR status, age, gender, HbA1c levels and duration of diabetes. A p-value of <0.05 was considered statistically significant. Results Perifoveal retinal thickness is reduced with increasing severity of neuropathy, especially in the inferior hemisphere (p=0.004); this effect was not related to age (p=0.088). For every unit increase in NDS score, the inferior perifoveal retinal thickness reduced by 1.64 μm. Neuro-retinal thickness around the ONH decreased with increasing severity of neuropathy (p<0.014 for average and hemisphere thicknesses); for every unit increase in NDS, neuro-retinal thickness around the ONH reduced by 1.23 μm. Retinal thickness in the parafovea was increased in the absence of DR (p<0.017 for average and hemisphere thicknesses). Neuro-retinal thickness at the macula was inversely related to age alone (p<0.001). All retinal parameters, except the inferior perifovea, reduced with advancing age (p<0.007 for all). Conclusions Diabetic neuropathy is associated with changes in full retinal thickness and neuro-retinal layers. This may represent a second threat to vision integrity, in addition to the better-characterised retinopathy. This study provides new knowledge about the anatomical aspects of the retinal tissue in relation to neuropathy and retinopathy.
Resumo:
Purpose: Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Methods: Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Results: Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). Conclusions: GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.