402 resultados para Resting Energy Expenditure
em Queensland University of Technology - ePrints Archive
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.
Resumo:
Background: Paediatric onset inflammatory bowel disease (IBD) may cause alterations in energy requirements and invalidate the use of standard prediction equations. Our aim was to evaluate four commonly used prediction equations for resting energy expenditure (REE) in children with IBD. Methods: Sixty-three children had repeated measurements of REE as part of a longitudinal research study yielding a total of 243 measurements. These were compared with predicted REE from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict equations using the Bland-Altman method. Results: Mean (±SD) age of the patients was 14.2 (2.4) years. Mean measured REE was 1566 (336) kcal per day compared with 1491 (236), 1441 (255), 1481 (232), and 1435 (212) kcal per day calculated from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict, respectively. While the Schofield equation demonstrated the least difference between measured and predicted REE, it, along with the other equations tested, did not perform uniformly across all subjects, indicating greater errors at either end of the spectrum of energy expenditure. Smaller differences were found for all prediction equations for Crohn's disease compared with ulcerative colitis. Conclusions: Of the commonly used equations, the equation of Schofield should be used in pediatric patients with IBD when measured values are not able to be obtained. (Inflamm Bowel Dis 2010;) Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.
Resumo:
OBJECTIVES: There is controversy in the literature regarding the effect of inflammatory bowel disease (IBD) on resting energy expenditure (REE). In many cases this may have resulted from inappropriate adjustment of REE measurements to account for differences in body composition. This article considers how to appropriately adjust measurements of REE for differences in body composition between individuals with IBD. PATIENTS AND METHODS: Body composition, assessed via total body potassium to yield a measure of body cell mass (BCM), and REE measurements were performed in 41 children with Crohn disease and ulcerative colitis in the Royal Children's Hospital, Brisbane, Australia. Log-log regression was used to determine the power function to which BCM should be raised to appropriately adjust REE to account for differences in body composition between children. RESULTS: The appropriate value to "adjust" BCM was found to be 0.49, with a standard error of 0.10. CONCLUSIONS: Clearly, there is a need to adjust for differences in body composition, or at the very least body weight, in metabolic studies in children with IBD. We suggest that raising BCM to the power of 0.5 is both a numerically convenient and a statistically valid way of achieving this aim. Under circumstances in which the measurement of BCM is not available, raising body weight to the power of 0.5 remains appropriate. The important issue of whether REE is changed in cases of IBD can then be appropriately addressed. © 2007 Lippincott Williams & Wilkins, Inc.
Resumo:
Background and Aims: The objective of the study was to compare data obtained from the Cosmed K4 b2 and the Deltatrac II™ metabolic cart for the purpose of determining the validity of the Cosmed K4 b2 in measuring resting energy expenditure. Methods: Nine adult subjects (four male, five female) were measured. Resting energy expenditure was measured in consecutive sessions using the Cosmed K4 b2, the Deltatrac II™ metabolic cart separately and the Cosmed K4 b2 and Deltatrac II™ metabolic cart simultaneously, performed in random order. Resting energy expenditure (REE) data from both devices were then compared with values obtained from predictive equations. Results: Bland and Altman analysis revealed a mean bias for the four variables, REE, respiratory quotient (RQ), VCO2, VO2 between data obtained from Cosmed K4 b2 and Deltatrac II™ metabolic cart of 268 ± 702 kcal/day, -0.0±0.2, 26.4±118.2 and 51.6±126.5 ml/min, respectively. Corresponding limits of agreement for the same four variables were all large. Also, Bland and Altman analysis revealed a larger mean bias between predicted REE and measured REE using Cosmed K4 b2 data (-194±603 kcal/day) than using Deltatrac™ metabolic cart data (73±197 kcal/day). Conclusions: Variability between the two devices was very high and a degree of measurement error was detected. Data from the Cosmed K4 b2 provided variable results on comparison with predicted values, thus, would seem an invalid device for measuring adults. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
BACKGROUND/OBJECTIVEs A decline in resting energy expenditure (REE) beyond that predicted from changes in body composition has been noted following dietary-induced weight loss. However, it is unknown whether a compensatory downregulation in REE also accompanies exercise (EX)-induced weight loss, or whether this adaptive metabolic response influences energy intake (EI). SUBJECTS/METHODS Thirty overweight and obese women (body mass index (BMI)=30.6±3.6 kg/m2) completed 12 weeks of supervised aerobic EX. Body composition, metabolism, EI and metabolic-related hormones were measured at baseline, week 6 and post intervention. The metabolic adaptation (MA), that is, difference between predicted and measured REE was also calculated post intervention (MApost), with REE predicted using a regression equation generated in an independent sample of 66 overweight and obese women (BMI=31.0±3.9 kg/m2). RESULTS Although mean predicted and measured REE did not differ post intervention, 43% of participants experienced a greater-than-expected decline in REE (−102.9±77.5 kcal per day). MApost was associated with the change in leptin (r=0.47; P=0.04), and the change in resting fat (r=0.52; P=0.01) and carbohydrate oxidation (r=−0.44; P=0.02). Furthermore, MApost was also associated with the change in EI following EX (r=−0.44; P=0.01). CONCLUSIONS Marked variability existed in the adaptive metabolic response to EX. Importantly, those who experienced a downregulation in REE also experienced an upregulation in EI, indicating that the adaptive metabolic response to EX influences both physiological and behavioural components of energy balance.
Resumo:
Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.
Resumo:
Poor nutritional status in patients with cystic fibrosis (CF) is associated with severe lung disease, and possible causative factors include inadequate intake, malabsorption, and increased energy requirements. Body cell mass (which can be quantified by measurement of total body potassium) provides an ideal standard for measurements of energy expenditure. The aim of this study was to compare resting energy expenditure (REE) in patients with CF with both predicted values and age-matched healthy children and to determine whether REE was related to either nutritional status or pulmonary function. REE was measured by indirect calorimetry and body cell mass by scanning with total body potassium in 30 patients with CF (12 male, mean age = 13.07 ± 0.55 y) and 18 healthy children (six male, mean age = 12.56 ± 1.25 y). Nutritional status was expressed as a percentage of predicted total body potassium. Lung function was measured in the CF group by spirometry and expressed as the percentage of predicted forced expiratory volume in 1 s. Mean REE was significantly increased in the patients with CF compared with healthy children (119.3 ± 3.1% predicted versus 103.6 ± 5% predicted, P < 0.001) and, using multiple regression techniques, REE for total body potassium was significantly increased in patients with CF (P = 0.0001). There was no relation between REE and nutritional status or pulmonary disease status in the CF group. In conclusion, REE is increased in children and adolescents with CF but is not directly related to nutritional status or pulmonary disease.
Resumo:
Background Energy conserving processes reported in undernourished women during pregnancy are a recognised strategy to provide energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy conserving mechanisms. Objective We tested the hypothesis that obese women would demonstrate behavioural adaptation (i.e. decrease in self-selected walking (SSW) speed) but not metabolic compensation (i.e. decrease in resting metabolic rate (RMR) or metabolic cost of walking) during gestation. Design RMR, SSW speed, metabolic cost of walking, and anthropometry were measured in 23 women (BMI: 33.6 ± 2.5 kg/m2; 31 ± 4 years) at approximately weeks 15 (wk 15) and 30 (wk 30) of gestation. RMR was also measured in two cohorts of non-pregnant controls matched for age, weight and height of the pregnant cohort at wk 15 (N=23) and wk 30 (N=23). Results GWG varied widely (11.3 ± 5.4 kg) and 52% of women gained more weight than is recommended. RMR increased significantly by an average 177 ± 176 kcal/d (11±12%; P<0.0001); however the within-group variability was large. Both the metabolic cost of walking and SSW speed decreased significantly (P<0.01). While RMR increased in >80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Conclusions While the increase in RMR was greater than was explained by weight gain, there was evidence of both behavioural and biological compensation in the metabolic cost of walking in obese women during gestation.
Resumo:
A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.
Resumo:
Objective: Walking is commonly recommended to help with weight management. We measured total energy expenditure (TEE) and its components to quantify the impact of increasing exercise-induced energy expenditure (ExEE) on other components of TEE. Methods: Thirteen obese women underwent an 8-week walking group intervention. TEE was quantified using doubly labeled water, ExEE was quantified using heart rate monitors, daily movement was assessed by accelerometry and resting metabolic rate was measured using indirect calorimetry. Results: Four of the 13 participants achieved the target of 1500 kcal wk−1 of ExEE and all achieved 1000 kcal wk−1. The average ExEE achieved by the group across the 8 weeks was 1434 ± 237 kcal wk−1. Vigorous physical activity, as assessed by accelerometry, increased during the intervention by an average of 30 min per day. Non-exercise activity thermogenesis (NEAT) decreased, on average, by 175 kcal d−1 (−22%) from baseline to the intervention and baseline fitness was correlated with change in NEAT. Conclusions: Potential alterations in non-exercise activity should be considered when exercise is prescribed. The provision of appropriate education on how to self-monitor daily activity levels may improve intervention outcomes in groups who are new to exercise. Practice implications: Strategies to sustain incidental and light physical activity should be offered to help empower individuals as they develop and maintain healthy and long-lasting lifestyle habits.
Resumo:
Although a number of studies have examined the role of gastric emptying (GE) in obesity, the influences of habitual physical activity level, body composition and energy expenditure (EE) on GE have received very little consideration. In this study, we have compared GE in active and inactive males, and we have characterised relationships with body composition (fat and fat free mass) and EE. Forty-four males (Active: n=22, Inactive: n=22; range BMI 21-36kg/m2; range percent fat mass 9-42%) were studied, with GE of a standardised (1676 kJ) pancake meal being assessed by 13C-octanoic acid breath test, body composition by air displacement plethysmography, resting metabolic rate (RMR) by indirect calorimetry and activity EE (AEE) by accelerometry. Results showed that GE was faster in active compared to inactive males (mean ±SD half time (t1/2): Active: 157±18 and Inactive: 179±21 min, p<0.001). When data from both groups were pooled, GE t1/2 was associated with percent fat mass (r=0.39, p<0.01) and AEE (r =-0.46, p<0.01). After controlling for habitual physical activity status, the association between AEE and GE remained, but not that for percent fat mass and GE. BMI and RMR were not associated with GE. In summary, faster GE is considered to be a marker of a habitually active lifestyle in males, and is associated with a higher AEE and lower percent fat mass. The possibility that GE contributes to a gross physiological regulation (or dysregulation) of food intake with physical activity level deserves further investigation.
Resumo:
Background Several approaches have been used to express energy expenditure in youth, but no consensus exists as to which best normalizes data for the wide range of ages and body sizes across a range of physical activities. This study examined several common metrics for expressing energy expenditure to determine whether one metric can be used for all healthy children. Such a metric could improve our ability to further advance the Compendium of Physical Activities for Youth. Methods A secondary analysis of oxygen uptake (VO2) data obtained from five sites was completed, that included 947 children ages 5 to 18 years, who engaged in 14 different activities. Resting metabolic rate (RMR) was computed based on Schofield Equations [Hum Nutr Clin Nut. 39(Suppl 1), 1985]. Absolute oxygen uptake (ml.min-1), oxygen uptake per kilogram body mass (VO2 in ml.kg-1.min-1), net oxygen uptake (VO2 – resting metabolic rate), allometric scaled oxygen uptake (VO2 in ml.kg-0.75.min-1) and YOUTH-MET (VO2.[resting VO2] -1) were calculated. These metrics were regressed with age, sex, height, and body mass. Results Net and allometric-scaled VO2, and YOUTH-MET were least associated with age, sex and physical characteristics. For moderate-to-vigorous intensity activities, allometric scaling was least related to age and sex. For sedentary and low-intensity activities, YOUTH-MET was least related to age and sex. Conclusions No energy expenditure metric completely eliminated the influence of age, physical characteristics, and sex. The Adult MET consistently overestimated EE. YOUTH-MET was better for expressing energy expenditure for sedentary and light activities, whereas allometric scaling was better for moderate and vigorous intensity activities. From a practical perspective, The YOUTH-MET may be the more feasible metric for improving of the Compendium of Physical Activities for Youth.