858 resultados para Restaurant management -- Automation
em Queensland University of Technology - ePrints Archive
Resumo:
Home Automation (HA) has emerged as a prominent ¯eld for researchers and in- vestors confronting the challenge of penetrating the average home user market with products and services emerging from technology based vision. In spite of many technology contri- butions, there is a latent demand for a®ordable and pragmatic assistive technologies for pro-active handling of complex lifestyle related problems faced by home users. This study has pioneered to develop an Initial Technology Roadmap for HA (ITRHA) that formulates a need based vision of 10-15 years, identifying market, product and technology investment opportunities, focusing on those aspects of HA contributing to e±cient management of home and personal life. The concept of Family Life Cycle is developed to understand the temporal needs of family. In order to formally describe a coherent set of family processes, their relationships, and interaction with external elements, a reference model named Fam- ily System is established that identi¯es External Entities, 7 major Family Processes, and 7 subsystems-Finance, Meals, Health, Education, Career, Housing, and Socialisation. Anal- ysis of these subsystems reveals Soft, Hard and Hybrid processes. Rectifying the lack of formal methods for eliciting future user requirements and reassessing evolving market needs, this study has developed a novel method called Requirement Elicitation of Future Users by Systems Scenario (REFUSS), integrating process modelling, and scenario technique within the framework of roadmapping. The REFUSS is used to systematically derive process au- tomation needs relating the process knowledge to future user characteristics identi¯ed from scenarios created to visualise di®erent futures with richly detailed information on lifestyle trends thus enabling learning about the future requirements. Revealing an addressable market size estimate of billions of dollars per annum this research has developed innovative ideas on software based products including Document Management Systems facilitating automated collection, easy retrieval of all documents, In- formation Management System automating information services and Ubiquitous Intelligent System empowering the highly mobile home users with ambient intelligence. Other product ideas include robotic devices of versatile Kitchen Hand and Cleaner Arm that can be time saving. Materialisation of these products require technology investment initiating further research in areas of data extraction, and information integration as well as manipulation and perception, sensor actuator system, tactile sensing, odour detection, and robotic controller. This study recommends new policies on electronic data delivery from service providers as well as new standards on XML based document structure and format.
Resumo:
An Asset Management (AM) life-cycle constitutes a set of processes that align with the development, operation and maintenance of assets, in order to meet the desired requirements and objectives of the stake holders of the business. The scope of AM is often broad within an organization due to the interactions between its internal elements such as human resources, finance, technology, engineering operation, information technology and management, as well as external elements such as governance and environment. Due to the complexity of the AM processes, it has been proposed that in order to optimize asset management activities, process modelling initiatives should be adopted. Although organisations adopt AM principles and carry out AM initiatives, most do not document or model their AM processes, let alone enacting their processes (semi-) automatically using a computer-supported system. There is currently a lack of knowledge describing how to model AM processes through a methodical and suitable manner so that the processes are streamlines and optimized and are ready for deployment in a computerised way. This research aims to overcome this deficiency by developing an approach that will aid organisations in constructing AM process models quickly and systematically whilst using the most appropriate techniques, such as workflow technology. Currently, there is a wealth of information within the individual domains of AM and workflow. Both fields are gaining significant popularity in many industries thus fuelling the need for research in exploring the possible benefits of their cross-disciplinary applications. This research is thus inspired to investigate these two domains to exploit the application of workflow to modelling and execution of AM processes. Specifically, it will investigate appropriate methodologies in applying workflow techniques to AM frameworks. One of the benefits of applying workflow models to AM processes is to adapt and enable both ad-hoc and evolutionary changes over time. In addition, this can automate an AM process as well as to support the coordination and collaboration of people that are involved in carrying out the process. A workflow management system (WFMS) can be used to support the design and enactment (i.e. execution) of processes and cope with changes that occur to the process during the enactment. So far few literatures can be found in documenting a systematic approach to modelling the characteristics of AM processes. In order to obtain a workflow model for AM processes commonalities and differences between different AM processes need to be identified. This is the fundamental step in developing a conscientious workflow model for AM processes. Therefore, the first stage of this research focuses on identifying the characteristics of AM processes, especially AM decision making processes. The second stage is to review a number of contemporary workflow techniques and choose a suitable technique for application to AM decision making processes. The third stage is to develop an intermediate ameliorated AM decision process definition that improves the current process description and is ready for modelling using the workflow language selected in the previous stage. All these lead to the fourth stage where a workflow model for an AM decision making process is developed. The process model is then deployed (semi-) automatically in a state-of-the-art WFMS demonstrating the benefits of applying workflow technology to the domain of AM. Given that the information in the AM decision making process is captured at an abstract level within the scope of this work, the deployed process model can be used as an executable guideline for carrying out an AM decision process in practice. Moreover, it can be used as a vanilla system that, once being incorporated with rich information from a specific AM decision making process (e.g. in the case of a building construction or a power plant maintenance), is able to support the automation of such a process in a more elaborated way.
Resumo:
The rising problems associated with construction such as decreasing quality and productivity, labour shortages, occupational safety, and inferior working conditions have opened the possibility of more revolutionary solutions within the industry. One prospective option is in the implementation of innovative technologies such as automation and robotics, which has the potential to improve the industry in terms of productivity, safety and quality. The construction work site could, theoretically, be contained in a safer environment, with more efficient execution of the work, greater consistency of the outcome and higher level of control over the production process. By identifying the barriers to construction automation and robotics implementation in construction, and investigating ways in which to overcome them, contributions could be made in terms of better understanding and facilitating, where relevant, greater use of these technologies in the construction industry so as to promote its efficiency. This research aims to ascertain and explain the barriers to construction automation and robotics implementation by exploring and establishing the relationship between characteristics of the construction industry and attributes of existing construction automation and robotics technologies to level of usage and implementation in three selected countries; Japan, Australia and Malaysia. These three countries were chosen as their construction industry characteristics provide contrast in terms of culture, gross domestic product, technology application, organisational structure and labour policies. This research uses a mixed method approach of gathering data, both quantitative and qualitative, by employing a questionnaire survey and an interview schedule; using a wide range of sample from management through to on-site users, working in a range of small (less than AUD0.2million) to large companies (more than AUD500million), and involved in a broad range of business types and construction sectors. Detailed quantitative (statistical) and qualitative (content) data analysis is performed to provide a set of descriptions, relationships, and differences. The statistical tests selected for use include cross-tabulations, bivariate and multivariate analysis for investigating possible relationships between variables; and Kruskal-Wallis and Mann Whitney U test of independent samples for hypothesis testing and inferring the research sample to the construction industry population. Findings and conclusions arising from the research work which include the ranking schemes produced for four key areas of, the construction attributes on level of usage; barrier variables; differing levels of usage between countries; and future trends, have established a number of potential areas that could impact the level of implementation both globally and for individual countries.
Resumo:
Use of Unmanned Aerial Vehicles (UAVs) in support of government applications has already seen significant growth and the potential for use of UAVs in commercial applications is expected to rapidly expand in the near future. However, the issue remains on how such automated or operator-controlled aircraft can be safely integrated into current airspace. If the goal of integration is to be realized, issues regarding safe separation in densely populated airspace must be investigated. This paper investigates automated separation management concepts in uncontrolled airspace that may help prepare for an expected growth of UAVs in Class G airspace. Not only are such investigations helpful for the UAV integration issue, the automated separation management concepts investigated by the authors can also be useful for the development of new or improved Air Traffic Control services in remote regions without any existing infrastructure. The paper will also provide an overview of the Smart Skies program and discuss the corresponding Smart Skies research and development effort to evaluate aircraft separation management algorithms using simulations involving realworld data communication channels, and verified against actual flight trials. This paper presents results from a unique flight test concept that uses real-time flight test data from Australia over existing commercial communication channels to a control center in Seattle for real-time separation management of actual and simulated aircraft. The paper also assesses the performance of an automated aircraft separation manager.
Resumo:
The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.
Resumo:
Building project management requires effective coordination and collaboration between multiple project members. It can be achieved through real time communication flow between all. In present scenario, it can be achieved through adoption of Information and Communication Technologies (ICT). Construction industry primarily comprises small and medium enterprises (SMEs). Also, ICT adoption has been slow in the industry.---------- Research is required to assess the factors that affect ICT adoption at the three levels of industry, organization and people, with focus on SMEs. This paper discusses a component of the research undertaken to study these factors and issues in the context of Indian construction industry. A questionnaire survey was conducted and through quantitative data analysis the extent of adoption of formal Project Management processes, ICT adoption for these processes and factors including perception based factors affecting ICT adoption were studied. Results of data analysis includes identification of issues that require action at the three study levels.---------- The results can be generalized for other countries with due considerations, specifically for countries where the construction industry is similar to Indian construction industry in terms of working methodologies or for large countries.
Resumo:
New air traffic automated separation management concepts are constantly under investigation. Yet most of the automated separation management algorithms proposed over the last few decades have assumed either perfect communication or exact knowledge of all aircraft locations. In realistic environments, these idealized assumptions are not valid and any communication failure can potentially lead to disastrous outcomes. This paper examines the separation performance behavior of several popular algorithms during periods of information loss. This comparison is done through simulation studies. These simulation studies suggest that communication failure can cause the performance of these separation management algorithms to degrade significantly. This paper also describes some preliminary flight tests.
Resumo:
This paper proposes a novel automated separation management concept in which onboard decision support is integrated within a centralised air traffic separation management system. The onboard decision support system involves a decentralised separation manager that can overrule air traffic management instructions under certain circumstances. This approach allows the advantages of both centralised and decentralised concepts to be combined (and disadvantages of each separation management approach to be mitigated). Simulation studies are used to illustrate the potential benefits of the combined separation management concept.
Resumo:
This paper presents an Airborne Systems Laboratory for Automation Research. The Airborne Systems Laboratory (ASL) is a Cessna 172 aircraft that has been specially modified and equipped by ARCAA specifically for research in future aircraft automation technologies, including Unmanned Airborne Systems (UAS). This capability has been developed over a long period of time, initially through the hire of aircraft, and finally through the purchase and modification of a dedicated flight-testing capability. The ASL has been equipped with a payload system that includes the provision of secure mounting, power, aircraft state data, flight management system and real-time subsystem. Finally, this system has been deployed in a cost effective platform allowing real-world flight-testing on a range of projects.
Resumo:
Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.
Resumo:
A key feature in future aircraft operations will be automation of various aircraft processes, such as air traffic separation management and the management of forced landing events. Automated versions of these processes will often involve consideration of multiple modes of operations and hence require consideration of automated decision processes able to switch between various available modes of operations. This paper proposes a switching algorithm on the basis of max-min decision theory. This algorithm is particularly suitable in situations where each operational mode has access to different set of partial information. We apply our proposed algorithm to the air traffic separation management problem. A simulation study is presented that illustrates the performance of the proposed switching algorithm.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.