665 resultados para Resource holding power
em Queensland University of Technology - ePrints Archive
Resumo:
Media reportage often act as interpretations of accountability policies thereby making the news media a part of the policy enactment process. Within such a process, their role is that of policy reinforcement rather than policy construction or contestation. This paper draws on the experiences of school leaders in regional Queensland, Australia, and their perceptions of the media frames that are used to report on accountability using school performance. The notion of accountability is theorised in terms of media understandings of ‘holding power to account’, and forms the theoretical framework for this study. The methodological considerations both contextualise aspects of the schools involved in the study, and outline how ‘framing theory’ was used to analyse the data. The paper draws on a number of participant experiences and newspaper accounts of schools to identify the frames that are used by the press when reporting on school performance. Three frames referring to school performance are discussed in this paper: those that rank performance such as league tables; frames that decontextualise performance isolating it from school circumstances and levels of funding; and frames that residualise government schools.
Resumo:
The concept of a substantive integrator is introduced as a method for integrated resource and environmental management as a means to assimilate different resource values at the operational or field level. A substantive integrator is a strategic management tool for integrating multiple uses into coprorate management regimes that traditionally manage for single values. Wildlife habitat management is presented as a substantive integrator for managing vegetation on electric utility power line corridors. A case study from northern British Columbia provides an example of wildlife habitat management as a means to integrate other resource values such as aesthetics, access and subsistence along British Columbia Hydro and Power Authority's transmission rights-of-way.
Resumo:
The firm is faced with a decision concerning the nature of intra-organizational exchange relationships with internal human resources and the nature or inter-organizational exchange relationships with market firms. In both situations, the firm can develop an exchange that ranges from a discrete exchange to a relational exchange. Transaction Cost Economics (TCE) and the Resource Dependency View (RDV) represent alternative efficiency-based explanations fo the nature of the exchange relationship. The aim of the paper is to test these two theories in respect of air conditioning maintenance in retail centres. Multiple sources of information are genereated from case studies of Australian retail centres to test these theories in respoect of internalized operations management (concerning strategic aspects of air conditioning maintenance) and externalized planned routine air conditioning maintenance. The analysis of the data centres on pattern matching. It is concluded that the data supports TCE - on the basis of a development in TCE's contractual schema. Further research is suggested towards taking a pluralistic stance and developing a combined efficiency and power hypothesis - upon which Williamson has speculated. For practice, the conclusions also offer a timely cautionary note concerning the adoption of one approach in all exchange relationships.
Resumo:
Workflow Management Systems (WfMSs) enable the development and maintenance of workflow specifications at design time and their execution and monitoring at runtime. The open source WfMS YAWL supports the YAWL language – a formally defined language based on Petri nets which offers comprehensive support for control-flow and resource patterns. In addition, the YAWL system provides extensive support for process flexibility, in particular for process configuration, exception handling, dynamic workflow and declarative workflow. Due to its formal foundation, sophisticated verification support can also be achieved. This paper presents the YAWL system and its main applications.
Resumo:
We consider the problem of designing a surveillance system to detect a broad range of invasive species across a heterogeneous sampling frame. We present a model to detect a range of invertebrate invasives whilst addressing the challenges of multiple data sources, stratifying for differential risk, managing labour costs and providing sufficient power of detection.We determine the number of detection devices required and their allocation across the landscape within limiting resource constraints. The resulting plan will lead to reduced financial and ecological costs and an optimal surveillance system.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
Australia is currently in the midst of a major resources boom. However the benefits from the boom are unevenly distributed, with state governments collecting billions in royalties, and mining companies billions in profits. The costs are borne mostly at a local level by regional communities on the frontier of the mining boom, surrounded by thousands of men housed in work camps. The escalating reliance on non–resident workers housed in camps carries significant risks for individual workers, host communities and the provision of human services and infrastructure. These include rising rates of fatigue–related death and injuries, rising levels of alcohol–fuelled violence, illegally erected and unregulated work camps, soaring housing costs and other costs of living, and stretched basic infrastructure undermining the sustainability of these towns. But these costs have generally escaped industry, government and academic scrutiny. This chapter directs a critical gaze at the hopelessly compromised industry–funded research vital to legitimating the resource sector’s self–serving knowledge claims that it is committed to social sustainability and corporate responsibility. The chapter divides into two parts. The first argues that post–industrial mining regimes mask and privatise these harms and risks, shifting them on to workers, families and communities. The second part links the privatisation of these risks with the political economy of privatised knowledge embedded in the approvals process for major resource sector projects.
Resumo:
The Midwest Independent Transmission System Operator (MISO) has experienced significant amounts of wind power development within the last decade. The MISO footprint spans the majority of the upper Midwest region of the country, from the Dakotas to Indiana and as far east as Michigan. These areas have a rich wind energy resource. States in the MISO footprint have passed laws or set goals that require load serving entities to supply a portion of their load using renewable energy. In order to meet these requirements, significant investments are needed to build the transmission infrastructure necessary to deliver the power from these often remote wind energy resources to the load centers. This paper presents some of the transmission planning related work done at MISO which was largely influenced by current and future needs for increased wind power generation in the footprint. Specifically, topics covered are generator interconnection, long-term planning coordination, and cost-allocation for new transmission lines.
Resumo:
A sub optimal resource allocation algorithm for Orthogonal Frequency Division Multiplexing (OFDM) based cooperative scheme is proposed. The system consists of multiple relays. Subcarrier space is divided into blocks and relays participating in cooperation are allocated specific blocks to be used with a user. To ensure unique subcarrier assignment system is constrained such that same block cannot be used by more than one user. Users are given fair block assignments while no restriction for maximum number of blocks a relay can employ is given. Forced cost based decisions [1] are used for block allocation. Simulation results show that this scheme outperforms a non cooperating scheme with sequential allocation with respect to power usage.
Resumo:
Optimisation of Organic Rankine Cycle (ORCs) for binary-cycle geothermal applications could play a major role in determining the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration: the selection of working fluid and appropriate operating conditions as well as optimisation of the turbine design for those conditions will determine the amount of power that can be extracted from a resource. In this paper, we present the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow machines based on a number of promising ORC systems that use five different working fluids: R134a, R143a, R236fa, R245fa and n-Pentane. Preliminary meanline analysis lead to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139–289 mm rotor diameter). The highest performing cycle, based on R134a, was found to produce 33% more net power from a 150 °C resource flowing at 10 kg/s than the lowest performing cycle, based on n-Pentane.
Resumo:
Optimisation of Organic Rankine Cycles (ORCs) for binary-cycle geothermal applications could play a major role in the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration. Due to the temperature differences in geothermal resources a one-size-fits-all approach to surface power infrastructure is not appropriate. Furthermore, the traditional use of steam as a working fluid does not seem practical due to the low temperatures of many resources. A variety of organic fluids with low boiling points may be utilised as ORC working fluids in binary power cycle loops. Due to differences in thermodynamic properties, certain fluids are able to extract more heat from a given resource than others over certain temperature and pressure ranges. This enables the tailoring of power cycle infrastructure to best match the geothermal resource through careful selection of the working fluid and turbine design optimisation to yield the optimum overall cycle performance. This paper presents the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow turbines based on a selection of promising ORC cycles using five different high-density working fluids: R134a, R143a, R236fa, R245fa and n-Pentane at sub- or trans-critical conditions. Numerous studies published compare a variety of working fluids for various ORC configurations. However, there is little information specifically pertaining to the design and implementation of ORCs using realistic radial turbine designs in terms of pressure ratios, inlet pressure, rotor size and rotational speed. Preliminary 1D analysis leads to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139289 mm rotor diameter). The highest performing cycle (R134a) was found to produce 33% more net power from a 150°C resource flowing at 10 kg/s than the lowest performing cycle (n-Pentane).
Resumo:
This thesis presents an analysis of the resource allocation problem in Orthogonal Frequency Division Multiplexing based multi-hop wireless communications systems. The study analyzed the tractable nature of the problem and designed several heuristic and fairness-aware resource allocation algorithms. These algorithms are fast and efficient and therefore can improve power management in wireless systems significantly.
Resumo:
This project was an innovative approach in developing smart coordination of available energy resources to improve the integration level of PV in distribution network. Voltage and loading issues are considered as the main concerns for future electricity grid which need to be avoided using such resources. A distributed control structure was proposed for the resources in distribution network to avoid noted power quality issues.