73 resultados para Redundant manipulators
em Queensland University of Technology - ePrints Archive
Resumo:
In many applications, e.g., bioinformatics, web access traces, system utilisation logs, etc., the data is naturally in the form of sequences. People have taken great interest in analysing the sequential data and finding the inherent characteristics or relationships within the data. Sequential association rule mining is one of the possible methods used to analyse this data. As conventional sequential association rule mining very often generates a huge number of association rules, of which many are redundant, it is desirable to find a solution to get rid of those unnecessary association rules. Because of the complexity and temporal ordered characteristics of sequential data, current research on sequential association rule mining is limited. Although several sequential association rule prediction models using either sequence constraints or temporal constraints have been proposed, none of them considered the redundancy problem in rule mining. The main contribution of this research is to propose a non-redundant association rule mining method based on closed frequent sequences and minimal sequential generators. We also give a definition for the non-redundant sequential rules, which are sequential rules with minimal antecedents but maximal consequents. A new algorithm called CSGM (closed sequential and generator mining) for generating closed sequences and minimal sequential generators is also introduced. A further experiment has been done to compare the performance of generating non-redundant sequential rules and full sequential rules, meanwhile, performance evaluation of our CSGM and other closed sequential pattern mining or generator mining algorithms has also been conducted. We also use generated non-redundant sequential rules for query expansion in order to improve recommendations for infrequently purchased products.
Resumo:
Abstract Study design: A prospective investigation of patients undergoing lumbar spine surgery. Objective: Is there a correlation between patient’s expectations before lumbar surgery, postoperative outcomes and satisfaction levels? Methods: A prospective study of 145 patients undergoing primary, single-level surgery for degenerative lumbar conditions was conducted. Oswestry Disability Index (ODI), back visual analogue scale (VAS) and leg VAS were assessed pre-operatively and at 6 weeks and 6 months post-surgery. Patients’ expectations were measured pre-operatively by asking them to score the level of pain and disability that would be least acceptable for them to undergo surgery and be satisfied. Satisfaction was assessed six weeks post-operatively with a Likert scale. Differences in patient expectations between actual and expected improvements were quantified. Results: Most patients had a clinically relevant improvement, but only about half achieved their expectation. Satisfaction did not correlate with pre-operative pain or disability, or with patient expectation of improvement. Instead, satisfaction correlated with positive outcomes. Conclusions Patient expectations have little bearing on final outcome and satisfaction.
Resumo:
The 1967 Protocol Relating to the Status of Refugees has been described as an unnecessary addendum to the 1951 Convention Relating to the Status of Refugees. However, if the 1967 Protocol was superfluous, why did the United Nations High Commissioner for Refugees in the early 1960s insist on its development? This article seeks to establish that the 1967 Protocol was originally intended to encompass the broader concerns of African and Asian states concerning refugee populations in their region. However, the political influence upon the development of international refugee law radically altered the UNHCR's endeavour to make the 1951 Convention universally accessible.
Resumo:
We describe our experiences with automating a large fork-lift type vehicle that operates outdoors and in all weather. In particular, we focus on the use of independent and robust localisation systems for reliable navigation around the worksite. Two localisation systems are briefly described. The first is based on laser range finders and retro-reflective beacons, and the second uses a two camera vision system to estimate the vehicle’s pose relative to a known model of the surrounding buildings. We show the results from an experiment where the 20 tonne experimental vehicle, an autonomous Hot Metal Carrier, was conducting autonomous operations and one of the localisation systems was deliberately made to fail.
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
Current regulatory requirements on data privacy make it increasingly important for enterprises to be able to verify and audit their compliance with their privacy policies. Traditionally, a privacy policy is written in a natural language. Such policies inherit the potential ambiguity, inconsistency and mis-interpretation of natural text. Hence, formal languages are emerging to allow a precise specification of enforceable privacy policies that can be verified. The EP3P language is one such formal language. An EP3P privacy policy of an enterprise consists of many rules. Given the semantics of the language, there may exist some rules in the ruleset which can never be used, these rules are referred to as redundant rules. Redundancies adversely affect privacy policies in several ways. Firstly, redundant rules reduce the efficiency of operations on privacy policies. Secondly, they may misdirect the policy auditor when determining the outcome of a policy. Therefore, in order to address these deficiencies it is important to identify and resolve redundancies. This thesis introduces the concept of minimal privacy policy - a policy that is free of redundancy. The essential component for maintaining the minimality of privacy policies is to determine the effects of the rules on each other. Hence, redundancy detection and resolution frameworks are proposed. Pair-wise redundancy detection is the central concept in these frameworks and it suggests a pair-wise comparison of the rules in order to detect redundancies. In addition, the thesis introduces a policy management tool that assists policy auditors in performing several operations on an EP3P privacy policy while maintaining its minimality. Formal results comparing alternative notions of redundancy, and how this would affect the tool, are also presented.
Resumo:
For most of the work done in developing association rule mining, the primary focus has been on the efficiency of the approach and to a lesser extent the quality of the derived rules has been emphasized. Often for a dataset, a huge number of rules can be derived, but many of them can be redundant to other rules and thus are useless in practice. The extremely large number of rules makes it difficult for the end users to comprehend and therefore effectively use the discovered rules and thus significantly reduces the effectiveness of rule mining algorithms. If the extracted knowledge can’t be effectively used in solving real world problems, the effort of extracting the knowledge is worth little. This is a serious problem but not yet solved satisfactorily. In this paper, we propose a concise representation called Reliable Approximate basis for representing non-redundant approximate association rules. We prove that the redundancy elimination based on the proposed basis does not reduce the belief to the extracted rules. We also prove that all approximate association rules can be deduced from the Reliable Approximate basis. Therefore the basis is a lossless representation of approximate association rules.
Resumo:
The transformation of China's urban landscape has witnessed a boom in cultural adaptation, namely the adaptation of a Western idea, the creative cluster. This chapter examines the formatting of hundreds of creative clusters-art centres, animation bases, cultural zones, and incubators. The cluster has important implications for how we understand China going forward into the second decade of the 21st century. The cluster phenomenon has resulted in to a substantive remaking of the social contract, between officials, entrepreneurs, local residents, academics-and most significantly cultural producers. However, these processes of adaption are mostly driven by real estate developers working in partnership with local government officials. Cut and paste design is the fast road to completion. In this sense, the description 'creative' may well be redundant.
Resumo:
Association rule mining has made many advances in the area of knowledge discovery. However, the quality of the discovered association rules is a big concern and has drawn more and more attention recently. One problem with the quality of the discovered association rules is the huge size of the extracted rule set. Often for a dataset, a huge number of rules can be extracted, but many of them can be redundant to other rules and thus useless in practice. Mining non-redundant rules is a promising approach to solve this problem. In this paper, we firstly propose a definition for redundancy; then we propose a concise representation called Reliable basis for representing non-redundant association rules for both exact rules and approximate rules. An important contribution of this paper is that we propose to use the certainty factor as the criteria to measure the strength of the discovered association rules. With the criteria, we can determine the boundary between redundancy and non-redundancy to ensure eliminating as many redundant rules as possible without reducing the inference capacity of and the belief to the remaining extracted non-redundant rules. We prove that the redundancy elimination based on the proposed Reliable basis does not reduce the belief to the extracted rules. We also prove that all association rules can be deduced from the Reliable basis. Therefore the Reliable basis is a lossless representation of association rules. Experimental results show that the proposed Reliable basis can significantly reduce the number of extracted rules.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.