63 resultados para Rain Forest

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods: Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results: At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion: Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 3.04 Mg C.ha(-1) yr(-1), with a mean of 0.54 Mg C.ha(-1).yr(-1) and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waterfalls attract tourists because they are aesthetically appealing landscape features that are not part of everyday experience. It is generally understood that falls are usually seen at their best when there is a copious flow of water, especially after heavy rain. Guidebooks often contain this observation when referring to waterfalls, sometimes warning readers that the flow may be severely reduced during dry periods. Indeed, many visitors are disappointed when they see falls at such times. Some are saddened when the discharge of a waterfall has been depleted by the abstraction of water upstream for power generation or other purposes. While, for those in search of the Sublime or merely the superlative, size is often important, small waterfalls can give great pleasure to lovers of landscape beauty. According to guidebooks, however, even these falls are usually best seen after rain. Drawing on tourist and travel literature and personal journals from the eighteenth century to the present, and with reference to examples from different parts of the world, this paper discusses the importance of discharge in the tourist experience of waterfalls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This exhibition was the outcome of a personal arts-based exploration of the meaning of interiority. Through the process it was found that existentially the architectural wall differentiating inside from outside does not exist but operates as a space of overlap, a groundless ground providing for dwelling in the real existential sense of the word.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field experiences for young children are an ideal medium for environmental education/education for sustainability because of opportunities for direct experience in nature, integrated learning, and high community involvement. This research documented the development - in 4-5 year old Prep children - of knowledge, attitudes and actions/advocacy in support of an endangered native Australian animal, the Greater Bilby. Data indicated that children gained new knowledge, changed attitudes and built a repertoire of action/ advocacy strategies in native animal conservation as a result of participating in a forest field adventure. The curriculum and pedagogical features that supported these young children’s learning include: active engagement in a natural environment, learning through curriculum integration at home and at school, anthropomorphic representations of natural elements, making connections with cultural practices, and intergenerational learning. The paper also highlights research strategies that can be usefully and ethically applied when conducting studies involving young children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the effect of rain on travel demand measured on the Tokyo Metropolitan Expressway (MEX). Rainfall data monitored by the Japan Meteorological Agency's meso-scale network of weather stations are used. This study found that travel demand decreases during rainy days and, in particular, larger reductions occur over the weekend. The effect of rainfall on the number of accidents recorded on 10 routes on the MEX is also analysed. Statistical testing shows that the average frequency of accidents, during periods of rainfall, is significantly different from the average frequency at other times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of biogenic particle formation on climate is a well recognised phenomenon. To understand the mechanisms underlying the biogenic particle formation, determining the chemical composition of the new particles and therefore the species that drive the particle production is of utmost importance. Due to the very small amount of mass involved, indirect approaches are frequently used to infer the composition. We present here the results of such an indirect approach by simultaneously measuring volatile and hygroscopic properties of newly formed particles in a forest environment. It is shown that the particles are composed of both sulphates and organics, with the amount of sulphate component strongly depending on the available gas-phase sulphuric acid, and the organic components having the same volatility and hygroscopicity as photooxidation products of a monoterpene such as α-pinene. Our findings agree with a two-step process through nucleation and cluster formation followed by simultaneous growth by condensation of sulphates and organics that take the particles to climatically relevant sizes.