217 resultados para Radiology, Medical.

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasound is used extensively in the field of medical imaging. In this paper, the basic principles of ultrasound are explained using ‘everyday’ physics. Topics include the generation of ultrasound, basic interactions with material and the measurement of blood flow using the Doppler effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

John Cameron has made significant contributions to the field of Medical Physics. His contributions encompassed research and development, technical developments and education. He had a particular interest in the education of medical physicists in developing countries. Structured clinical training is also an essential component of the professional development of a medical physicist. This paper considers aspects of the clinical training and education of medical physicists in South-East Asia and the challenges facing the profession in the region if it is to keep pace with the rapid increase in the amount and technical complexity of medical physics infrastructure in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of groups around the world are working in the field of three dimensional(3D) ultrasound (US) in order to obtain higher quality diagnostic information. 3D US, in general, involves collecting a sequence of conventional 2D US images along with information on the position and orientation of each image plane. A transformation matrix is calculated relating image space to real world space. This allows image pixels and region of interest (ROI) points drawn on the image to be displayed in 3D. The 3D data can be used for the production of volume or surface rendered images, or for the direct calculation of ROI volumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims The Medical Imaging Training Immersive Environment (MITIE) system is a recently developed virtual reality (VR) platform that allows students to practice a range of medical imaging techniques. The aim of this pilot study was to harvest user feedback about the educational value of the application and inform future pedagogical development. This presentation explores the use of this technology for skills training and blurring the boundaries between academic learning and clinical skills training. Background MITIE is a 3D VR environment that allows students to manipulate a patient and radiographic equipment in order to produce a VR-generated image for comparison with a gold standard. As with VR initiatives in other health disciplines (1-6) the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia “Simulated Learning Environments” grant. Methods Over 80 students undertaking the Bachelor of Medical Imaging Course were randomised to receive practical experience with either MITIE or radiographic equipment in the medical radiation laboratory. Student feedback about the educational value of the software was collected and performance with an assessed setup was measured for both groups for comparison. Ethical approval for the project was provided by the university ethics panel. Results This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value as well as comparative quantitative performance data. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application’s significance as a pre-clinical training tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either during their academic timetables or their clinical placement. Conclusion Student feedback and performance data indicate that MITIE has a valuable role to play in the clinical skills training for medical imaging students both in the academic and the clinical environment. Future work will establish a framework for an appropriate supporting pedagogy that can cross the boundary between the two environments. This project was possible due to funding made available by Health Workforce Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there is a plethora of definitions of blended learning, the underlying distinguishing feature is the combination of traditional content delivery and the utilisation of technology. Within Medical Imaging undergraduate education there is evidence of advantages and increased student engagement when utilising a blended learning approach. Although the embedding of technology has been proven to be a useful teaching tool, “Educators should tailor their teaching media to learner’s needs rather than assume that web based learning is intrinsically superior”. This study aims to determine which clinical learning tools are perceived to be the most useful to the student in preparing them for placements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Undergraduate Medical Imaging (MI)students at QUT attend their first clinical placement towards the end of semester two. Students undertake two (pre)clinical skills development units – one theory and one practical. Students gain good contextual and theoretical knowledge during these units via a blended learning model with multiple learning methods employed. Students attend theory lectures, practical sessions, tutorial sessions in both a simulated and virtual environment and also attend pre-clinical scenario based tutorial sessions. The aim of this project is to evaluate the use of blended learning in the context of 1st year Medical Imaging Radiographic Technique and its effectiveness in preparing students for their first clinical experience. It is hoped that the multiple teaching methods employed within the pre-clinical training unit at QUT builds students clinical skills prior to the real situation. A quantitative approach will be taken, evaluating via pre and post clinical placement surveys. This data will be correlated with data gained in the previous year on the effectiveness of this training approach prior to clinical placement. In 2014 59 students were surveyed prior to their clinical placement demonstrated positive benefits of using a variety of learning tools to enhance their learning. 98.31%(n=58)of students agreed or strongly agreed that the theory lectures were a useful tool to enhance their learning. This was followed closely by 97% (n=57) of the students realising the value of performing role-play simulation prior to clinical placement. Tutorial engagement was considered useful for 93.22% (n=55) whilst 88.14% (n=52) reasoned that the x-raying of phantoms in the simulated radiographic laboratory was beneficial. Self-directed learning yielded 86.44% (n=51). The virtual reality simulation software was valuable for 72.41% (n=42) of the students. Of the 4 students that disagreed or strongly disagreed with the usefulness of any tool they strongly agreed to the usefulness of a minimum of one other learning tool. The impact of the blended learning model to meet diverse student needs continues to be positive with students engaging in most offerings. Students largely prefer pre -clinical scenario based practical and tutorial sessions where 'real-world’ situations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of health professionals facing criminal charges of manslaughter or criminal negligence causing death or grievous bodily harm as a result of alleged negligence in their professional practice was thrown into stark relief by the recent acquittal of four physicians accused of mismanaging Canada’s blood system in the early 1980s. Stories like these, as well as international reports detailing an increase in the numbers of physicians being charged with (and in some cases convicted of) serious criminal offences as the result of alleged negligence in their professional practice, have resulted in some anxiety about the apparent increase in the incidence of such charges and their appropriateness in the healthcare context. Whilst research has focused on the incidence, nature and appropriateness of criminal charges against health professionals, particularly physicians, for alleged negligence in their professional practice in the United Kingdom, the United States, Japan, and New Zealand, the Canadian context has yet to be examined. This article examines the Canadian context and how the criminal law is used to regulate the negligent acts or omissions of a health care professional in the course of their professional practice. It also assesses the appropriateness of such use. It is important at this point to state that the analysis in this article does not focus on those, fortunately few, cases where a health professional has intentionally killed his or her patients but rather when patients’ deaths or grievous injuries were allegedly as a result of that health professional’s negligent acts or omissions when providing health services to that patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Paramedics and other emergency health workers are exposed to infectious disease particularly when undertaking exposure-prone procedures as a component of their everyday practice. This study examined paramedic knowledge of infectious disease aetiology and transmission in the pre-hospital care environment.--------- Methods: A mail survey of paramedics from an Australian ambulance service (n=2274) was conducted.--------- Results: With a response rate of 55.3% (1258/2274), the study demonstrated that paramedic knowledge of infectious disease aetiology and modes of transmission was poor. Of the 25 infectious diseases included in the survey, only three aetiological agents were correctly identified by at least 80% of respondents. The most accurate responses for aetiology of individual infectious diseases were for HIV/AIDS (91.4%), influenza (87.4%), and hepatitis B (85.7%). Poorest results were observed for pertussis, infectious mononucleosis, leprosy, dengue fever, Japanese B encephalitis and vancomycin resistant enterococcus (VRE), all with less than half the sample providing a correct response. Modes of transmission of significant infectious diseases were also assessed. Most accurate responses were found for HIV/AIDS (85.8%), salmonella (81.9%) and influenza (80.1%). Poorest results were observed for infectious mononucleosis, diphtheria, shigella, Japanese B encephalitis, vancomycin resistant enterococcus, meningococcal meningitis, rubella and infectious mononucleosis, with less than a third of the sample providing a correct response.--------- Conclusions: Results suggest that knowledge of aetiology and transmission of infectious disease is generally poor amongst paramedics. A comprehensive in-service education infection control programs for paramedics with emphasis on infectious disease aetiology and transmission is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is currently a strong focus worldwide on the potential of large-scale Electronic Health Record (EHR) systems to cut costs and improve patient outcomes through increased efficiency. This is accomplished by aggregating medical data from isolated Electronic Medical Record databases maintained by different healthcare providers. Concerns about the privacy and reliability of Electronic Health Records are crucial to healthcare service consumers. Traditional security mechanisms are designed to satisfy confidentiality, integrity, and availability requirements, but they fail to provide a measurement tool for data reliability from a data entry perspective. In this paper, we introduce a Medical Data Reliability Assessment (MDRA) service model to assess the reliability of medical data by evaluating the trustworthiness of its sources, usually the healthcare provider which created the data and the medical practitioner who diagnosed the patient and authorised entry of this data into the patient’s medical record. The result is then expressed by manipulating health record metadata to alert medical practitioners relying on the information to possible reliability problems.