275 resultados para Radiation Protection.
em Queensland University of Technology - ePrints Archive
Resumo:
"Combining facets of health physics with medicine, An Introduction to Radiation Protection in Medicine covers the background of the subject and the medical situations where radiation is the tool to diagnose or treat human disease. Encouraging newcomers to the field to properly and efficiently function in a versatile and evolving work setting, it familiarizes them with the particular problems faced during the application of ionizing radiation in medicine. The text builds a fundamental knowledge base before providing practical descriptions of radiation safety in medicine. It covers basic issues related to radiation protection, including the physical science behind radiation protection and the radiobiological basis of radiation protection. The text also presents operational and managerial tools for organizing radiation safety in a medical workplace. Subsequent chapters form the core of the book, focusing on the practice of radiation protection in different medical disciplines. They explore a range of individual uses of ionizing radiation in various branches of medicine, including radiology, nuclear medicine, external beam radiotherapy, and brachytherapy. With contributions from experienced practicing physicists, this book provides essential information about dealing with radiation safety in the rapidly shifting and diverse environment of medicine."--publisher website
Resumo:
Purpose Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of 15 applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially-costly over estimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls and other walls) by 20 evaluating three different bunker designs. Methods Radiation survey measurements of primary, scattered and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0 to 330o, to 25 assess the effects of radiation beam direction on the results. Results For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage. Conclusions Results of this study suggest that IMRT workload corrections are unnecessary, for 30 survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in this study are repeated for the bunker in question. Reduction of the correction factor for other secondary barrier survey measurements is not recommended unless the contribution from leakage is separetely evaluated.
Resumo:
Asoftware-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students’ understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 %of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of ‘‘invisible’’ physical principles and increased opportunity for experimentation and collaborative problembased learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.
Resumo:
Queensland University of Technology has a long standing in providing tertiary education and training in ionising radiation. The radiological laboratory plays an important part in this education and training. As radiological applications are diversified in the fields of health and environment, the laboratory provides support for a number of scenarios in the use of experimental situations in radiation detection and radiation protection. This paper discusses the role that a radiological laboratory technician plays in the functionality of a radiological laboratory.
Resumo:
Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organisation is still unclear despite its decisive role in determining the fate of the damaged cell. Revealing the dynamic sequence of the repair proteins is therefore critical in understanding how the DNA repair mechanisms work. There are also still open questions regarding the possible movement of damaged chromatin domains and its role as trigger for lesion recognition and signalling in the DNA repair context. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. We have followed the development of radiation-induced foci for three DNA damage markers (i.e. γ-H2AX, 53BP1 and hSSB1) using normal fibroblasts (AG01522), human breast adenocarcinoma cells (MCF7) and human fibrosarcoma cells (HT1080) stably transfected with yellow fluorescent protein fusion proteins following irradiation with the QUB X-ray microbeam (carbon X-rays <2 µm spot). The size and intensity of the foci has been analysed as a function of dose and time post-irradiation to investigate the dynamics of the above-mentioned DNA repair processes and monitor the remodelling of chromatin structure that the cell undergoes to deal with DNA damage.
Resumo:
Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies. © 2013 Glenn Jenkins et al.
Resumo:
Resurrection plants can withstand extreme dehydration to an air-dry state and then recover upon receiving water. Tripogon loliiformis (F.Muell.) C.E.Hubb. is a largely uncharacterised native Australian desiccation-tolerant grass that resurrects from the desiccated state within 72 h. Using a combination of structural and physiological techniques the structural and physiological features that enable T. loliiformis to tolerate desiccation were investigated. These features include: - (i) a myriad of structural changes such as leaf folding, cell wall folding and vacuole fragmentation that mitigate desiccation stress; - (ii) potential role of sclerenchymatous tissue within leaf folding and radiation protection; - (iii) retention of ~70% chlorophyll in the desiccated state; - (iv) early response of photosynthesis to dehydration by 50% reduction and ceasing completely at 80 and 70% relative water content, respectively; - (v) a sharp increase in electrolyte leakage during dehydration, and; - (vi) confirmation of membrane integrity throughout desiccation and rehydration. Taken together, these results demonstrate that T. loliiformis implements a range of structural and physiological mechanisms that minimise mechanical, oxidative and irradiation stress. These results provide powerful insights into tolerance mechanisms for potential utilisation in the enhancement of stress-tolerance in crop plants.
Resumo:
Generating accurate population-specific public health messages regarding sun protection requires knowledge about seasonal variation in sun exposure in different environments. To address this issue for a subtropical area of Australia, we used polysulphone badges to measure UVR for the township of Nambour (26° latitude) and personal UVR exposure among Nambour residents who were taking part in a skin cancer prevention trial. Badges were worn by participants for two winter and two summer days. The ambient UVR was approximately three times as high in summer as in winter. However, participants received more than twice the proportion of available UVR in winter as in summer (6.5%vs 2.7%, P < 0.05), resulting in an average ratio of summer to winter personal UVR exposure of 1.35. The average absolute difference in daily dose between summer and winter was only one-seventh of a minimal erythemal dose. Extrapolating from our data, we estimate that ca. 42% of the total exposure received in the 6 months of winter (June–August) and summer (December–February) is received during the three winter months. Our data show that in Queensland a substantial proportion of people’s annual UVR dose is obtained in winter, underscoring the need for dissemination of sun protection messages throughout the year in subtropical and tropical climates.