20 resultados para ROOT RESORPTION
em Queensland University of Technology - ePrints Archive
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweet potato, Ipomoea batatas,inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT)clones of 14 sweet potato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study.Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars.
Resumo:
The vibration serviceability limit state is an important design consideration for two-way, suspended concrete floors that is not always well understood by many practicing structural engineers. Although the field of floor vibration has been extensively developed, at present there are no convenient design tools that deal with this problem. Results from this research have enabled the development of a much-needed, new method for assessing the vibration serviceability of flat, suspended concrete floors in buildings. This new method has been named, the Response Coefficient-Root Function (RCRF) method. Full-scale, laboratory tests have been conducted on a post-tensioned floor specimen at Queensland University of Technology’s structural laboratory. Special support brackets were fabricated to perform as frictionless, pinned connections at the corners of the specimen. A series of static and dynamic tests were performed in the laboratory to obtain basic material and dynamic properties of the specimen. Finite-element-models have been calibrated against data collected from laboratory experiments. Computational finite-element-analysis has been extended to investigate a variety of floor configurations. Field measurements of floors in existing buildings are in good agreement with computational studies. Results from this parametric investigation have led to the development of new approach for predicting the design frequencies and accelerations of flat, concrete floor structures. The RCRF method is convenient tool to assist structural engineers in the design for the vibration serviceability limit-state of in-situ concrete floor systems.
Resumo:
In the field of process mining, the use of event logs for the purpose of root cause analysis is increasingly studied. In such an analysis, the availability of attributes/features that may explain the root cause of some phenomena is crucial. Currently, the process of obtaining these attributes from raw event logs is performed more or less on a case-by-case basis: there is still a lack of generalized systematic approach that captures this process. This paper proposes a systematic approach to enrich and transform event logs in order to obtain the required attributes for root cause analysis using classical data mining techniques, the classification techniques. This approach is formalized and its applicability has been validated using both self-generated and publicly-available logs.
Resumo:
High performance liquid chromatography (HPLC) coupled with the solid phase extraction method was developed for determining cimifugin (a coumarin derivative; one of Saposhnikovia divaricatae's constituents) in rat plasma after oral administration of Saposhnikovia divaricatae extract (SDE), and the pharmacokinetics of cimifugin either in SDE or as a single compound was investigated. The HPLC analysis was performed on a commercially available column (4.6 mm x 200 mm, 5 pm) with the isocratic elution of solvent A (Methanol) and solvent B (Water) (A:B=60:40) and the detection wavelength was set at 250 nm. The calibration curve was linear over the range of 0.100-10.040 microg/mL. The limit of detection was 30 ng/mL. At the rat plasma concentrations of 0.402, 4.016, 10.040 microg/mL, the intra-day precision was 6.21%, 3.98%, and 2.23%; the inter-day precision was 7.59%, 4.26%, and 2.09%, respectively. The absolute recovery was 76.58%, 76.61%, and 77.67%, respectively. When the dosage of SDE was equal to the pure compound calculated by the amount of cimifugin, it was found to have two maximum peaks while the pure compound only showed one peak in the plasma concentration-time curve. The pharmacokinetic characteristics of SDE showed the superiority of the extract and the properties of traditional Chinese medicine.
Resumo:
Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.
Resumo:
Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.
Resumo:
The objectives of this study were to describe root caries patterns of Chinese adults and to analyze the effect of selected demographic and socioeconomic factors on these patterns. A total sample of 1080 residents aged 35-44-years-old and 1080 residents aged 65-74-years-old from three urban and three rural survey sites in Hubei Province participated in both an oral health interview and a clinical oral health examination. Root surface caries prevalence rates were 13.1% in the middle-aged group and 43.9% in the elderly group. The mean number of teeth affected by caries in the middle-aged group was reported at 0.21 and 1.0 in the elderly group. Mean Root Caries Index (RCI) scores of the middle-aged were reported at 6.29 and elderly subjects were reported at 11.95. Elderly people living in rural areas reported a higher RCI score (13.24) than those living in urban areas (10.70). A significantly higher frequency of root surface caries was observed in elderly participants (P < 0.001, OR = 3.80) and ethnic minorities (P < 0.001, OR = 1.93). In addition, smokers, nontea drinkers, and those with an annual household income of 10,000 yuan or less tended to have higher caries prevalence. RCI figures for the different tooth types ranged from 1% to 16%, indicating a wide variation in attack rates. In conclusion, our study suggests that root surface caries occurrence is high among the Chinese adult population, especially older adults. With an increasing number of retained teeth in both middle-aged and elderly people, root caries is a growing disease in the People's Republic of China which deserves more attention in future research.
Resumo:
Engineers must have deep and accurate conceptual understanding of their field and Concept inventories (CIs) are one method of assessing conceptual understanding and providing formative feedback. Current CI tests use Multiple Choice Questions (MCQ) to identify misconceptions and have undergone reliability and validity testing to assess conceptual understanding. However, they do not readily provide the diagnostic information about students’ reasoning and therefore do not effectively point to specific actions that can be taken to improve student learning. We piloted the textual component of our diagnostic CI on electrical engineering students using items from the signals and systems CI. We then analysed the textual responses using automated lexical analysis software to test the effectiveness of these types of software and interviewed the students regarding their experience using the textual component. Results from the automated text analysis revealed that students held both incorrect and correct ideas for certain conceptual areas and provided indications of student misconceptions. User feedback also revealed that the inclusion of the textual component is helpful to students in assessing and reflecting on their own understanding.
Resumo:
Changes in global climate and land use affect important prolesses from evapotranspiration and groundwater recharge to carbon storage and biochemical cycling. Near surface soil moisture is pivotal to understand the consequences of these changes. However, the dynamic interactions between vegetation and soil moisture remain largely unresolved because it is difficult to monitor and quantify subsurface hydrologic fluxes at relevant scales. Here we use electrical resistivity to monitor the influence of climate and vegetation on root-zone moisture, bridging the gap between remotely-sensed and in-situ point measurements. Our research quantifies large seasonal differences in root-zone moisture dynamics for a forest-grassland ecotone. We found large differences in effective rooting depth and moisture distributions for the two vegetation types. Our results highlight the likely impacts of land transformations on groun ter recharge, streamflow, and land-atmosphere exchanges.