382 resultados para RIGID-ROD POLYAMIDES
em Queensland University of Technology - ePrints Archive
Resumo:
Background The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS), which aims of harness potential growth in order to correct spinal deformity. The purpose of this study was to compare the in-vitro biomechanical response of two different dual rod designs under axial rotation loading. Methods Six porcine spines were dissected into seven level thoracolumbar multi-segmental units. Each specimen was mounted and tested in a biaxial Instron machine, undergoing nondestructive left/right axial rotation to peak moments of 4Nm at a constant rotation rate of 8deg.s-1. A motion tracking system (Optotrak) measured 3D displacements of individual vertebrae. Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and ‘rigid’ rods in alternating sequence. Range of motion, neutral zone size and stiffness were calculated from the moment-rotation curves and intervertebral ranges of motion were calculated from Optotrak data. Findings Irrespective of test sequence, rigid rods showed significantly reduction of total rotation across all instrumented levels (with increased stiffness) whilst semi-constrained rods exhibited similar rotation behavior to the un-instrumented (P<0.05). An 11% and 8% increase in stiffness for left and right axial rotation respectively and 15% reduction in total range of motion was recorded with dual rigid rods compared with semi-constrained rods. Interpretation Based on these findings, the semi-constrained growing rods do not increase axial rotation stiffness compared with un-instrumented spines. This is thought to provide a more physiological environment for the growing spine compared to dual rigid rod constructs.
Resumo:
Managing spinal deformities in young children is challenging, particularly early onset scoliosis (EOS). Surgical intervention is often required if EOS has been unresponsive to conservative treatment particularly with rapidly progressive curves. An emerging treatment option for EOS is fusionless scoliosis surgery. Similar to bracing, this surgical option potentially harnesses growth, motion and function of the spine along with correcting spinal deformity. Dual growing rods are one such fusionless treatment, which aims to modulate growth of the vertebrae. The aim of this study was to ascertain the extent to which semi-constrained growing rods (Medtronic Sofamor Danek Memphis, TN, USA) with a telescopic sleeve component, reduce rotational constraint on the spine compared with standard rigid rods and hence potentially provide a more physiological mechanical environment for the growing spine. This study found that semi-constrained growing rods would be expected to allow growth via the telescopic rod components while maintaining the axial flexibility of the spine and the improved capacity for final correction.
Resumo:
This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.
Resumo:
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.
Resumo:
This paper describes an automated procedure for analysing the significance of each of the many terms in the equations of motion for a serial-link robot manipulator. Significance analysis provides insight into the rigid-body dynamic effects that are significant locally or globally in the manipulator's state space. Deleting those terms that do not contribute significantly to the total joint torque can greatly reduce the computational burden for online control, and a Monte-Carlo style simulation is used to investigate the errors thus introduced. The procedures described are a hybrid of symbolic and numeric techniques, and can be readily implemented using standard computer algebra packages.
Resumo:
Rigid lenses have been fitted less since the introduction of soft lenses nearly 40 years ago. Data that we have gathered from annual contact lens fitting surveys conducted in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA between 2000 and 2008 facilitate an accurate characterization of the pattern of the decline of rigid lens fitting during the first decade of this century. There is a trend for rigid lenses to be utilized primarily for refitting those patients who are already successful rigid lens wearers—most typically older females being refit with higher Dk materials. Rigid lenses are generally fitted on a full-time basis (four or more days of wear per week) without a planned replacement schedule. Orthokeratology is especially popular in the Netherlands, but is seldom prescribed in the other countries surveyed.
Resumo:
Scleral and corneal rigid lenses represented 100 per cent of the contact lens market immediately prior to the invention of soft lenses in the mid-1960s. In the United Kingdom today, rigid lenses comprise 2 per cent of all new lens fits. Low rates of rigid lens fitting are also apparent in 27 other countries which have recently been surveyed. Thus, the 1998 prediction of the author that rigid lenses – also referred to as ‘rigid gas permeable’ (RGP) lenses or ‘gas permeable’ (GP) lenses – would be obsolete by the year 2010 has essentially turned out to be correct. In this obituary, the author offers 10 reasons for the demise of rigid lens fitting: initial rigid lens discomfort; intractable rigid lens-induced corneal and lid pathology; extensive soft lens advertising; superior soft lens fitting logistics; lack of rigid lens training opportunities; redundancy of the rigid lens ‘problem solver’ function; improved soft toric and bifocal/varifocal lenses; limited uptake of orthokeratology; lack of investment in rigid lenses; and the emergence of aberration control soft lenses. Rigid lenses are now being fitted by a minority of practitioners with specialist skills/training. Certainly, rigid lenses can no longer be considered as a mainstream form of contact lens correction. May their dear souls (bulk properties) rest in peace.
Resumo:
The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.
Decoupled trajectory planning for a submerged rigid body subject to dissipative and potential forces
Resumo:
This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.
Resumo:
In this paper we analyze the equations of motion of a submerged rigid body. Our motivation is based on recent developments done in trajectory design for this problem. Our goal is to relate some properties of singular extremals to the existence of decoupling vector fields. The ideas displayed in this paper can be viewed as a starting point to a geometric formulation of the trajectory design problem for mechanical systems with potential and external forces.
Resumo:
INTRODUCTION. Following anterior thoracoscopic instrumentation and fusion for the treatment of thoracic AIS, implant related complications have been reported as high as 20.8%. Currently the magnitudes of the forces applied to the spine during anterior scoliosis surgery are unknown. The aim of this study was to measure the segmental compressive forces applied during anterior single rod instrumentation in a series of adolescent idiopathic scoliosis patients. METHODS. A force transducer was designed, constructed and retrofitted to a surgical cable compression tool, routinely used to apply segmental compression during anterior scoliosis correction. Transducer output was continuously logged during the compression of each spinal joint, the output at completion converted to an applied compression force using calibration data. The angle between adjacent vertebral body screws was also measured on intra-operative frontal plane fluoroscope images taken both before and after each joint compression. The difference in angle between the two images was calculated as an estimate for the achieved correction at each spinal joint. RESULTS. Force measurements were obtained for 15 scoliosis patients (Aged 11-19 years) with single thoracic curves (Cobb angles 47˚- 67˚). In total, 95 spinal joints were instrumented. The average force applied for a single joint was 540 N (± 229 N)ranging between 88 N and 1018 N. Experimental error in the force measurement, determined from transducer calibration was ± 43 N. A trend for higher forces applied at joints close to the apex of the scoliosis was observed. The average joint correction angle measured by fluoroscope imaging was 4.8˚ (±2.6˚, range 0˚-12.6˚). CONCLUSION. This study has quantified in-vivo, the intra-operative correction forces applied by the surgeon during anterior single rod instrumentation. This data provides a useful contribution towards an improved understanding of the biomechanics of scoliosis correction. In particular, this data will be used as input for developing patient-specific finite element simulations of scoliosis correction surgery.