14 resultados para REIONIZATION

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five different anionic [C3′H4′O]•- isomers, i.e. the radical anions of acrolein, acetyl carbene, formyl methyl carbene, methoxy vinylidene, and oxyallyl are generated in an ion beam mass spectrometer and subjected to neutralization-reionization (NR) mass spectrometric experiments including neutral and ion decomposition difference (NIDD) mass spectrometry; the latter allows for the examination of the neutrals' unimolecular reactivity. Further, the anionic, the singlet and triplet neutral, and the cationic [C3′H4′O] •-/0/•+ potentialenergy surfaces are calculated at the B3LYP/6-311++G(d,p) level of theory. For some species, notably the singlet state of oxyallyl, the theoretical treatment is complemented by G2, CASSCF, and MR-CI calculations. Theory and experiment are in good agreement in that at the neutral stage (i) acrolein does not react within the μsec timescale, (ii) acetyl and formyl methyl carbenes isomerize to methyl ketene, (iii) methoxy vinylidene rearranges to methoxy acetylene, (iv) singlet 1A1 oxyallyl undergoes ring closure to cyclopropanone, and (v) triplet 3B2 oxyallyl may have a lifetime sufficient to survive a NR experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral and cationic \[C-2,P-2] were investigated by a combination of mass spectrometry and electronic structure calculations. The cationic \[C-2,P-2](.+) potential energy surface including all relevant minima, transition states and fragmentation products was calculated at the B3LYP/6-311G(3df) level of theory. The most stable structures are linear PCCP.+ 1(.+) (E-rel=0 kcal mol(-1)), a three-membered ring with exocyclic phosphorus c-(PCC)-P 2(.+) (E-rel = 40.8 kcal mol(-1)), and the rhombic isomer 3(.+) (E-rel = 24.9 kcal mol(-1)). All fragmentation channels are significantly higher in energy than any of the \[C-2,P-2](.+) isomers. Experimentally, \[C-2,P-2](.+) ions are generated under high vacuum conditions by electron ionization of two different precursors. The fragmentation of \[C-2,P-2](.+) on collisional activation is preceded by rearrangement reactions which obscure the structural connectivity of the ions. The existence and the high stability of neutral \[C-2,P-2] were proved by a neutralization-reionization (NR) experiment. Although an unambiguous structural assignment of the neutral species cannot be drawn, both theory and experiment suggest that the long-sought neutral, linear PCCP 1 is generated using the NR technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular orbital calculations have predicted the stability of a range of connectivities for the radical C5H potential surface. The most energetically favorable of these include the linear C4CH geometry and two ring-chain structures HC2C3 and C2C3H The corresponding anions are also shown to be theoretically stable, and furthermore, a fourth isomer, C2CHC2, is predicted to be the most stable anion connectivity. These results have motivated experimental efforts. Methodologies for the generation of the non-ring-containing isomeric anions C4CH and C2CHC2 have been developed utilizing negative ion mass spectrometry. The absolute connectivities of the anions have been established using deuterium labeling, charge reversal, and neutralization reionization techniques. The success of the latter experiment confirms theoretical predictions of stability of the corresponding neutral species. This is the first reported observation of the neutral C2CHC2 species that calculations predict to be substantially less stable than the C4CH connectivity but still bound relative to isomerization processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anion radicals CnOn-. (n = 3-6) can be generated by ionization of cyclic carbonyl compounds in the negative ion mode. The ions as well as the corresponding neutral counterparts are probed by means of different mass spectrometric techniques. The results suggest that oxocarbons, i.e. cyclic polyketones, are formed under conservation of the skeletons of the precursor molecules. At least for n = 3, however, the experimental findings indicate partial rearrangement of the expected cyclopropanetrione structure to an oxycarboxylate for the anion, i.e. O-.-C=C-CO2-. For n = 4 and 6 almost complete dissociation of the neutral polyones into carbon monoxide is found, whereas for n = 5 a distinct recovery signal indicates the generation of genuine cyclopentanepentaone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dicoordinated borinium ion, dihydroxyborinium, B(OH)(2)(+) is generated from methyl boronic acid CH3B(OH)(2) by dissociative electron ionization and its connectivity confirmed by collisional activation. Neutralization-reionization (NR) experiments on this ion indicate that the neutral B(OH)(2) radical is a viable species in the gas phase. Both vertical neutralization of B(OH)(2)(+) and reionization of B(OH)(2) in the NR experiment are, however, associated with particularly unfavorable Franck-Condon factors. The differences in adiabatic and vertical electron transfer behavior can be traced back to a particular pi stabilization of the cationic species compared to the sp(2)-type neutral radical. Thermochemical data on several neutral and cationic boron compounds are presented based on calculations performed at the G2 level of theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylenedione C2O2 is one of the elusive small molecules which have remained undetected even after numerous attempts with different experimental techniques, This is surprising, since theoretical studies predicted the triplet state of C2O2 to be stable towards spin-allowed dissociation and hence long-lived. Here we report a comprehensive study of charged and neutral ethylenedione by means of charge reversal and neutralization -reionization mass spectrometry. These experimental results, in conjunction with theoretical calculations, suggest that neutral ethylenedione is intrinsically short-lived rather than being elusive, Both the singlet and triplet states of C2O2 are predicted to dissociate rapidly into two ground-state CO molecules, and for the triplet species, this dissociation involves facile curve-crossing to the singlet surface within a few nanoseconds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-8-enoate anion undergoes losses of the elements of C3H6, C4H8 and C6H12 on collisional activation, The mechanisms of these processes have been elucidated by a combination of product ion and labelling (H-2 and C-13) studies, together with a neutralisation reionisation mass spectrometric study. These studies allow the following conclusions to be made. (i) The loss of C3H6 involves cyclisation of the enolate anion of non-8-enoic acid to yield the cyclopentyl carboxylate anion and propene. (ii) The loss of 'C4H8' is a charge-remote process (one which proceeds remote from the charged centre) which yields the pent-4-enoate anion, butadiene and dihydrogen. This process co-occurs and competes with complex H scrambling. (iii) The major loss of 'C6H12' occurs primarily by a charge-remote process yielding the acrylate anion, hexa-1,5-diene and dihydrogen, but in this case no H scrambling accompanies the process. (iv) It is argued that the major reason why the two charge-remote processes occur in preference to anion-induced losses of but-l-ene and hex-l-ene from the respective 4- and 2-anions is that although these anions are formed, they have alternative and lower energy fragmentation pathways than those involving the losses of but-l-ene and hex-l-ene; viz. the transient 4-anion undergoes facile proton transfer to yield a more stable anion, whereas the 2-(enolate) anion undergoes preferential cyclisation followed by elimination of propene [see (i) above].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular orbital calculations have predicted the stability of a range of connectivities for the radical C5H potential surface. The most energetically favorable of these include the linear C4CH geometry and two ring-chain structures HC2C3 and C2C3H The corresponding anions are also shown to be theoretically stable, and furthermore, a fourth isomer, C2CHC2, is predicted to be the most stable anion connectivity. These results have motivated experimental efforts. Methodologies for the generation of the non-ring-containing isomeric anions C4CH and C2CHC2 have been developed utilizing negative ion mass spectrometry. The absolute connectivities of the anions have been established using deuterium labeling, charge reversal, and neutralization reionization techniques. The success of the latter experiment confirms theoretical predictions of stability of the corresponding neutral species. This is the first reported observation of the neutral C2CHC2 species that calculations predict to be substantially less stable than the C4CH connectivity but still bound relative to isomerization processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral NCN is made in a mass spectrometer by charge stripping of NCN-., while neutral dicyanocarbene NCCCN can be formed by neutralization of either the corresponding anionic and cationic species, NCCCN-. and NCCCN+.. Theoretical calculations at the RCCSD(T)/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory indicate that the (3)Sigma (-)(g) State of NCCCN is 18 kcal mol(-1) more stable than the (1)A(1) state. While the majority of neutrals formed from either NCCCN-. or NCCCN+. correspond to NCCCN, a proportion of the neutral NCCCN molecules have sufficient excess energy to effect rearrangement, as evidenced by a loss of atomic carbon in the neutralization reionization (NR) spectra of either NCCCN+. and NCCCN-.. C-13 labeling studies indicate that loss of carbon occurs statistically following or accompanied by scrambling of all three carbon atoms. A theoretical study at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level of theory indicates that C loss is a consequence of the rearrangement sequence NCCCN --> CNCCN --> CNCNC and that C scrambling occurs within singlet CNCCN via the intermediacy of a four-membered C-2v-symmetrical transition structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different radical anions of the empirical formula C5H2 have been generated by negative ion chemical ionization mass spectrometry in the gas phase. The isomers C4CH2 •-, and HC5H•- have been synthesized by unequivocal routes and their connectivities confirmed by deuterium labeling, charge reversal, and neutralization reionization experiments. The results also provided evidence for the existence of neutrals C4CH2, C2CHC2H, and HC5H as stable species; this is the first reported observation of C2CHC2H. Ab initio calculations confirm these structures to be minima on the anion and neutral potential energy surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consideration of theoretical calculations \[E3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)\] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) \[(HC equivalent to C)(2)C=C=C\](-.) \[from the reaction between (HC equivalent to C)(3)COCH3 and HO- \], (ii) \[HC=C=C=C=C=C=CH\](-.) \[from the reaction between HC equivalent to C-C equivalent to C-CD(OH)-C equivalent to CH and HO-\], (iii) \[C=C=C=C=C=C=CH2\](-.) \[from the reaction between DC equivalent to C-C equivalent to C-C equivalent to C-CH2OCH2CH3 and HO-\], and (iv) \[C equivalent to C-CH2-C equivalent to C-C equivalent to C\](-.) \[from the bis desilylation reaction of (CH3)(3)Si-C equivalent to C-CH2-C equivalent to C-C equivalent to C-Si (CH3)(3)With SF6-.\]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10(-6) s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consideration of theoretical calculations [B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) [(HC≡C)2C=C=C]-̇ [from the reaction between (HC≡C)3COCH3 and HO- ], (ii) [HC=C=C=C=C=C=CH]-̇ [from the reaction between HC≡C-C≡C- CD(OH)-C≡CH and HO-], (iii) [C=C=C=C=C=C=CH2]-̇ [from the reaction between DC≡C-C≡C- C≡C-CH2OCH2CH3 and HO-], and (iv) [C≡C-CH2-C≡C-C≡C]-̇ [from the bis desilylation reaction of (CH3)3Si-C≡C-CH2-C≡C-C≡C-Si (CH3)3 with SF6 -̇]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10-6 s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three anion isomers of formula C7H have been synthesised in the mass spectrometer by unequivocal routes. The structures of the isomers are \[HCCC(C-2)(2)](-), C6CH- and C2CHC4-. One of these, \[HCCC(C-2)(2)](-), is formed in sufficient yield to allow it to be charge stripped to the corresponding neutral radical.