26 resultados para REACTOR ACCIDENTS
em Queensland University of Technology - ePrints Archive
Resumo:
This paper presents a database ATP (Alternative Transient Program) simulated waveforms for shunt reactor switching cases with vacuum breakers in motor circuits following interruption of the starting current. The targeted objective is to provide multiple reignition simulated data for diagnostic and prognostic algorithms development, but also to help ATP users with practical study cases and component data compilation for shunt reactor switching. This method can be easily applied with different data for the different dielectric curves of circuit-breakers and networks. This paper presents design details, discusses some of the available cases and the advantages of such simulated data.
Resumo:
Research examining post-trauma pathology indicates negative outcomes can differ as a function of the type of trauma experienced. Such research has yet to be published when looking at positive post-trauma changes. Ninety-Four survivors of trauma, forming three groups, completed the Posttraumatic Growth Inventory (PTGI) and Impact of Events Scale-Revised (IES-R). Groups comprised survivors of i) sexual abuse ii) motor vehicle accidents iii) bereavement. Results indicted differences in growth between the groups with the bereaved reporting higher levels of growth than other survivors and sexual abuse survivors demonstrated higher levels of PTSD symptoms than the other groups. However, this did not preclude sexual abuse survivors from also reporting moderate levels of growth. Results are discussed with relation to fostering growth through clinical practice.
Resumo:
This paper studies the effect of rain on travel demand measured on the Tokyo Metropolitan Expressway (MEX). Rainfall data monitored by the Japan Meteorological Agency's meso-scale network of weather stations are used. This study found that travel demand decreases during rainy days and, in particular, larger reductions occur over the weekend. The effect of rainfall on the number of accidents recorded on 10 routes on the MEX is also analysed. Statistical testing shows that the average frequency of accidents, during periods of rainfall, is significantly different from the average frequency at other times.
Resumo:
Skid resistance is a condition parameter characterising the contribution that a road makes to the friction between a road surface and a vehicle tyre. Studies of traffic crash histories around the world have consistently found that a disproportionate number of crashes occur where the road surface has a low level of surface friction and/or surface texture, particularly when the road surface is wet. Various research results have been published over many years and have tried to quantify the influence of skid resistance on accident occurrence and to characterise a correlation between skid resistance and accident frequency. Most of the research studies used simple statistical correlation methods in analysing skid resistance and crash data.----- ------ Preliminary findings of a systematic and extensive literature search conclude that there is rarely a single causation factor in a crash. Findings from research projects do affirm various levels of correlation between skid resistance and accident occurrence. Studies indicate that the level of skid resistance at critical places such as intersections, curves, roundabouts, ramps and approaches to pedestrian crossings needs to be well maintained.----- ----- Management of risk is an integral aspect of the Queensland Department of Main Roads (QDMR) strategy for managing its infrastructure assets. The risk-based approach has been used in many areas of infrastructure engineering. However, very limited information is reported on using risk-based approach to mitigate crash rates related to road surface. Low skid resistance and surface texture may increase the risk of traffic crashes.----- ----- The objectives of this paper are to explore current issues of skid resistance in relation to crashes, to provide a framework of probability-based approach to be adopted by QDMR in assessing the relationship between crash accidents and pavement properties, and to explain why the probability-based approach is a suitable tool for QDMR in order to reduce accident rates due to skid resistance.
Resumo:
A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.
Resumo:
The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.
Resumo:
In this study a new immobilized flat plate photocatalytic reactor for wastewater treatment has been investigated using computational fluid dynamics (CFD). The reactor consists of a reactor inlet, a reactive section where the catalyst is coated, and outlet parts. For simulation, the reactive section of the reactor was modelled with an array of baffles. In order to optimize the fluid mixing and reactor design, this study attempts to investigate the influence of baffles with differing heights on the flow field of the flat plate reactor. The results obtained from the simulation of a baffled flat plate reactor hydrodynamics for differing baffle heights for certain positions are presented. Under the conditions simulated, the qualitative flow features, such as the distribution of local stream lines, velocity contours, and high shear region, boundary layers separation, vortex formation, and the underlying mechanism are examined. At low and high Re numbers, the influence of baffle heights on the distribution of species mass fraction of a model pollutant are also highlighted. The simulation of qualitative and quantitative properties of fluid dynamics in a baffled reactor provides valuable insight to fully understand the effect of baffles and their role on the flow pattern, behaviour, and features of wastewater treatment using a photocatalytic reactor.
Resumo:
A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.
Resumo:
The following discussion is in response to a 2010 article published in the Journal of Safety Research by J.C.F. de Winter and D. Dodou entitled “The Driver Behaviour Questionnaire as a predictor of accidents: A meta-analysis” (Volume 41, Number 6, pp. 463-470, available on sciencedirect.com). The editors are pleased to provide a forum for this exchange and welcome further comments.
Resumo:
The residence time distribution (RTD) is a crucial parameter when treating engine exhaust emissions with a Dielectric Barrier Discharge (DBD) reactor. In this paper, the residence time of such a reactor is investigated using a finite element based software: COMSOL Multiphysics 4.3. Non-thermal plasma (NTP) discharge is being introduced as a promising method for pollutant emission reduction. DBD is one of the most advantageous of NTP technologies. In a two cylinder co-axial DBD reactor, tubes are placed between two electrodes and flow passes through the annuals between these barrier tubes. If the mean residence time increases in a DBD reactor, there will be a corresponding increase in reaction time and consequently, the pollutant removal efficiency can increase. However, pollutant formation can occur during increased mean residence time and so the proportion of fluid that may remain for periods significantly longer than the mean residence time is of great importance. In this study, first, the residence time distribution is calculated based on the standard reactor used by the authors for ultrafine particle (10-500 nm) removal. Then, different geometrics and various inlet velocities are considered. Finally, for selected cases, some roughness elements added inside the reactor and the residence time is calculated. These results will form the basis for a COMSOL plasma and CFD module investigation.
Resumo:
Nonthermal plasma (NTP) treatment of exhaust gas is a promising technology for both nitrogen oxides (NOX) and particulate matter (PM) reduction by introducing plasma into the exhaust gases. This paper considers the effect of NTP on PM mass reduction, PM size distribution, and PM removal efficiency. The experiments are performed on real exhaust gases from a diesel engine. The NTP is generated by applying high-voltage pulses using a pulsed power supply across a dielectric barrier discharge (DBD) reactor. The effects of the applied high-voltage pulses up to 19.44 kVpp with repetition rate of 10 kHz are investigated. In this paper, it is shown that the PM removal and PM size distribution need to be considered both together, as it is possible to achieve high PM removal efficiency with undesirable increase in the number of small particles. Regarding these two important factors, in this paper, 17 kVpp voltage level is determined to be an optimum point for the given configuration. Moreover, particles deposition on the surface of the DBD reactor is found to be a significant phenomenon, which should be considered in all plasma PM removal tests.