24 resultados para RDF <Informatik>
em Queensland University of Technology - ePrints Archive
Resumo:
The challenges of maintaining a building such as the Sydney Opera House are immense and are dependent upon a vast array of information. The value of information can be enhanced by its currency, accessibility and the ability to correlate data sets (integration of information sources). A building information model correlated to various information sources related to the facility is used as definition for a digital facility model. Such a digital facility model would give transparent and an integrated access to an array of datasets and obviously would support Facility Management processes. In order to construct such a digital facility model, two state-of-the-art Information and Communication technologies are considered: an internationally standardized building information model called the Industry Foundation Classes (IFC) and a variety of advanced communication and integration technologies often referred to as the Semantic Web such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL). This paper reports on some technical aspects for developing a digital facility model focusing on Sydney Opera House. The proposed digital facility model enables IFC data to participate in an ontology driven, service-oriented software environment. A proof-of-concept prototype has been developed demonstrating the usability of IFC information to collaborate with Sydney Opera House’s specific data sources using semantic web ontologies.
Resumo:
Workflow Management Systems (WfMSs) enable the development and maintenance of workflow specifications at design time and their execution and monitoring at runtime. The open source WfMS YAWL supports the YAWL language – a formally defined language based on Petri nets which offers comprehensive support for control-flow and resource patterns. In addition, the YAWL system provides extensive support for process flexibility, in particular for process configuration, exception handling, dynamic workflow and declarative workflow. Due to its formal foundation, sophisticated verification support can also be achieved. This paper presents the YAWL system and its main applications.
Resumo:
Offering service bundles to the market is a promising option for service providers to strengthen their competitive advantages, cope with dynamic market conditions and deal with heterogeneous consumer demand. Although the expected positive effects of bundling strategies and pricing considerations for bundles are covered well by the available literature, limited guidance can be found regarding the identification of potential bundle candidates and the actual process of bundling. The proposed research aims at filling this gap by offering a service bundling method complemented by a proof-of-concept prototype, which extends the existing knowledge base in the multidisciplinary research area of Information Systems and Service Science as well as providing an organisation with a structured approach for bundling services.
Resumo:
Scientists need to transfer semantically similar queries across multiple heterogeneous linked datasets. These queries may require data from different locations and the results are not simple to combine due to differences between datasets. A query model was developed to make it simple to distribute queries across different datasets using RDF as the result format. The query model, based on the concept of publicly recognised namespaces for parts of each scientific dataset, was implemented with a configuration that includes a large number of current biological and chemical datasets. The configuration is flexible, providing the ability to transparently use both private and public datasets in any query. A prototype implementation of the model was used to resolve queries for the Bio2RDF website, including both Bio2RDF datasets and other datasets that do not follow the Bio2RDF URI conventions.
Resumo:
Privacy issues have hindered the evolution of e-health since its emergence. Patients demand better solutions for the protection of private information. Health professionals demand open access to patient health records. Existing e-health systems find it difficult to fulfill these competing requirements. In this paper, we present an information accountability framework (IAF) for e-health systems. The IAF is intended to address privacy issues and their competing concerns related to e-health. Capabilities of the IAF adhere to information accountability principles and e-health requirements. Policy representation and policy reasoning are key capabilities introduced in the IAF. We investigate how these capabilities are feasible using Semantic Web technologies. We discuss with the use of a case scenario, how we can represent the different types of policies in the IAF using the Open Digital Rights Language (ODRL).
Resumo:
In cross-organizational, distributed environments, Business Process Management requires collaborative technologies to facilitate the process of discovering, modeling, and improving business processes across geographical and organizational boundaries. This paper provides a comprehensive understanding of collaborative business process modeling that is based on a review of literature and a case study of three selected modelling tools. The application of the framework reveals that current process modeling tools consider different perspectives on collaboration, and that the included features are orthogonal. This paper informs practitioners about the state of the art in tool support for collaborative process modelling. It also informs vendors about opportunities to enhance the technology support. For research, our paper paper informs social aspects of BPM technology through its explicit focus on the collaboration of BPM stakeholders in the process of distributed modeling.
Resumo:
This thesis provides a query model suitable for context sensitive access to a wide range of distributed linked datasets which are available to scientists using the Internet. The model is designed based on scientific research standards which require scientists to provide replicable methods in their publications. Although there are query models available that provide limited replicability, they do not contextualise the process whereby different scientists select dataset locations based on their trust and physical location. In different contexts, scientists need to perform different data cleaning actions, independent of the overall query, and the model was designed to accommodate this function. The query model was implemented as a prototype web application and its features were verified through its use as the engine behind a major scientific data access site, Bio2RDF.org. The prototype showed that it was possible to have context sensitive behaviour for each of the three mirrors of Bio2RDF.org using a single set of configuration settings. The prototype provided executable query provenance that could be attached to scientific publications to fulfil replicability requirements. The model was designed to make it simple to independently interpret and execute the query provenance documents using context specific profiles, without modifying the original provenance documents. Experiments using the prototype as the data access tool in workflow management systems confirmed that the design of the model made it possible to replicate results in different contexts with minimal additions, and no deletions, to query provenance documents.
Resumo:
Chatrooms, for example Internet Relay Chat, are generally multi-user, multi-channel and multiserver chat-systems which run over the Internet and provide a protocol for real-time text-based conferencing between users all over the world. While a well-trained human observer is able to understand who is chatting with whom, there are no efficient and accurate automated tools to determine the groups of users conversing with each other. A precursor to analysing evolving cyber-social phenomena is to first determine what the conversations are and which groups of chatters are involved in each conversation. We consider this problem in this paper. We propose an algorithm to discover all groups of users that are engaged in conversation. Our algorithms are based on a statistical model of a chatroom that is founded on our experience with real chatrooms. Our approach does not require any semantic analysis of the conversations, rather it is based purely on the statistical information contained in the sequence of posts. We improve the accuracy by applying some graph algorithms to clean the statistical information. We present some experimental results which indicate that one can automatically determine the conversing groups in a chatroom, purely on the basis of statistical analysis.
Resumo:
Securing IT infrastructures of our modern lives is a challenging task because of their increasing complexity, scale and agile nature. Monolithic approaches such as using stand-alone firewalls and IDS devices for protecting the perimeter cannot cope with complex malwares and multistep attacks. Collaborative security emerges as a promising approach. But, research results in collaborative security are not mature, yet, and they require continuous evaluation and testing. In this work, we present CIDE, a Collaborative Intrusion Detection Extension for the network security simulation platform ( NeSSi 2 ). Built-in functionalities include dynamic group formation based on node preferences, group-internal communication, group management and an approach for handling the infection process for malware-based attacks. The CIDE simulation environment provides functionalities for easy implementation of collaborating nodes in large-scale setups. We evaluate the group communication mechanism on the one hand and provide a case study and evaluate our collaborative security evaluation platform in a signature exchange scenario on the other.
Resumo:
Computer worms represent a serious threat for modern communication infrastructures. These epidemics can cause great damage such as financial losses or interruption of critical services which support lives of citizens. These worms can spread with a speed which prevents instant human intervention. Therefore automatic detection and mitigation techniques need to be developed. However, if these techniques are not designed and intensively tested in realistic environments, they may cause even more harm as they heavily interfere with high volume communication flows. We present a simulation model which allows studies of worm spread and counter measures in large scale multi-AS topologies with millions of IP addresses.