2 resultados para QAC

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research project explores the nature of In-School Touring Productions that are presented in Queensland classrooms by Queensland Arts Council (QAC). The research emerged from my background as a drama teacher working on secondment at QAC in the Ontour inschools department. The research follows the development of a new production Power Trip: the Adventures of Watty and Volt. The research was guided by the key question: What are some of the production and pragmatic issues that relate to In-school Touring Productions and in what ways do QAC’s Ontour inschools productions offer learning experiences? This research involved the creation of three intersecting elements: (1) a 45 minute personal documentary film, 8 Times Around the Equator. The film follows my enthusiasms for this hybrid form of theatre which developed from my childhood, teaching practice and finally in my role at QAC; (2) a multimedia DVD, Queensland Arts Council 2008 inschools Season, which presents a series of short video clips promoting QAC’s Ontour inschools program; and finally (3) this exegetical paper, Queensland Arts Council Road Trip: an Examination of In-Schools Touring Productions (2005-2008). This exegesis supports the multimedia presentations and provides additional descriptions of QAC's Ontour inschools productions which are contextualised within the history of QAC and the field of Youth Theatre generally. During the project I observed 37 QAC productions and analysed them against set criteria and as a result four types of learning experiences were identified: • Category X: X-periencing the Art Form – providing students with exposure to traditional forms of main stage theatre; • Category L: Learning Through the Art Form – communicating information using an art form to educate. For example using comedy, clowning or slapstick to teach science; • Category U: Unpacking the Art Form – deconstructing art forms and providing students with increased awareness and appreciation; and • Category M: M-bodying the Art Form – workshops and artist residencies that allow students to create their own work. The creative works (documentary film and DVDs) combine to make up 65% of the project. This exegetical paper concludes the final 35% required for submission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of organoclays (OC) by intercalation of quaternary ammonium cation (QAC) into expanding clay minerals, notably montmorillonite (Mt), has attracted a great deal of attention during the past two decades. The OC have also found applications in the manufacture of clay polymer nanocomposites (CPN) and environmental remediation. Despite the wealth of information that exists on the formation and properties of OC, some problems remain to be resolved. The present contribution is an attempt at clarifying two outstanding issues, based on the literature and experimental data obtained by the authors over the past years. The first issue concerns the relationship between the cation exchange capacity (CEC) of the Mt and the basal spacing of the OC which, in turn, is dependent on the concentration and the nature of the added QAC. At a concentration less than 1 CEC, organo-Mt (OMt) formed using the QAC with a short alkyl chain length with nc < 16 (e.g., dodecyl trimethylammonium) gives basal spacings of 1.4–1.6 nm that are essentially independent of the CEC. However, for long-chain QAC with nc ≥ 16 (e.g., hexadecyl trimethylammonium), the basal spacing varies with the QAC concentration. For Mt with a CEC of 80–90 meq/100 g, the basal spacing of the OC increases gradually with the CEC and shows a sudden (stepwise) increase to 3.2–3.8 nm at a QAC concentration of 1.5 CEC and to 3.5–4.0 nm at a concentration of 2.0 CEC. The second issue pertains to the “locking” effect in QAC- and silane-modified pillared interlayered clays (PILC) and Mt. For silylated Mt, the “locking” effect results from the covalent bonding of silane to two adjacent layers within a single clay mineral particle. The same mechanism can operate in silane-grafted PILC but in this case, the “locking” effect may primarily be ascribed to the pillaring of adjacent basal surfaces by metal hydr(oxides).