159 resultados para Proteínas proto-oncogênicas c-fos
em Queensland University of Technology - ePrints Archive
Resumo:
The c-Fos–c-Jun complex forms the activator protein 1 transcription factor, a therapeutic target in the treatment of cancer. Various synthetic peptides have been designed to try to selectively disrupt the interaction between c-Fos and c-Jun at its leucine zipper domain. To evaluate the binding affinity between these synthetic peptides and c-Fos, polarizable and nonpolarizable molecular dynamics (MD) simulations were conducted, and the resulting conformations were analyzed using the molecular mechanics generalized Born surface area (MM/GBSA) method to compute free energies of binding. In contrast to empirical and semiempirical approaches, the estimation of free energies of binding using a combination of MD simulations and the MM/GBSA approach takes into account dynamical properties such as conformational changes, as well as solvation effects and hydrophobic and hydrophilic interactions. The predicted binding affinities of the series of c-Jun-based peptides targeting the c-Fos peptide show good correlation with experimental melting temperatures. This provides the basis for the rational design of peptides based on internal, van der Waals, and electrostatic interactions.
Resumo:
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Resumo:
In the last decade we have come to understand that the growth of cancer cells in general and of breast cancer in particular depends, in many cases, upon growth factors that will bind to and activate their receptors. One of these growth factor receptors is the erbB-2 protein which plays an important role in the prognosis of breast cancer and is overexpressed in nearly 30% of human breast cancer patients. While evidence accumulates to support the relationship between erbB-2 overexpression and poor overall survival in breast cancer, understanding of the biological consequence(s) of erbB-2 overexpression remains elusive. Our recent discovery of the gp30 has allowed us to identify a number of related but distinct biological endpoints which appear responsive to signal transduction through the erbB-2 receptor. These endpoints of growth, invasiveness, and differentiation have clear implications for the emergence, maintenance and/or control of malignancy, and represent established endpoints in the assessment of malignant progression in breast cancer. We have shown that gp30 induces a biphasic growth effect on cells with erbB-2 over-expression. We have recently determined the protein sequence of gp30 and cloned its full length cDNA sequence. We have also cloned two additional forms to the ligand, that are believed to be different isoforms. We are currently expressing the different forms in order to determine their biological effects. To elucidate the cellular mechanisms underlying cell growth inhibition by gp30, we tested the effect of this ligand on cell growth and differentiation of the human breast cancer cells which overexpress erbB-2 and cells which express low levels of this protooncogene. High concentrations of ligand induced differentiation of cells overexpressing erbB-2, as measured by inhibition of cell growth, and increased synthesis of milk components, and modulation of E-cadherin and up- regulation of c-jun and c-fos. These findings indicate that ligand-induced growth inhibition in cells overexpressing erbB-2 is associated with an apparent induction of differentiation. The availability of gp30 derived synthetic peptides and its full cDNAs provides tools necessary to acquire a better understanding of the mechanism of action of the this ligands and the erbB-2 receptor in breast cancer.
Resumo:
Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.
Resumo:
Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.
Resumo:
A broad range of motorcycle safety programs and systems exist in Australia and New Zealand. These vary from statewide licensing and training systems run by government licensing and transport agencies to safety programs run in small communities and by individual rider groups. While the effectiveness of licensing and training has been reviewed and recommendations for improvement have been developed (e.g. Haworth & Mulvihill, 2005), little is known about many smaller or innovative programs, and their potential to improve motorcycle safety in the ACT.
Resumo:
FOS, the Fleck Operating System, is a new operating system that implements cooperative threads—providing a simple and productive environment for applications programmers. This paper discusses sensor network operating systems in general and places this development in context.
Resumo:
Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.