98 resultados para Prostatic Neoplasms, Castration-Resistant

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although systemic androgen deprivation prolongs life in advanced prostate cancer, remissions are temporary because patients almost uniformly progress to a state of a castration-resistant prostate cancer (CRPC) as indicated by recurring PSA. This complex process of progression does not seem to be stochastic as the timing and phenotype are highly predictable, including the observation that most androgen-regulated genes are reactivated despite castrate levels of serum androgens. Recent evidence indicates that intraprostatic levels of androgens remain moderately high following systemic androgen deprivation therapy, whereas the androgen receptor (AR) remains functional, and silencing the AR expression following castration suppresses tumor growth and blocks the expression of genes known to be regulated by androgens. From these observations, we hypothesized that CRPC progression is not independent of androgen-driven activity and that androgens may be synthesized de novo in CRPC tumors leading to AR activation. Using the LNCaP xenograft model, we showed that tumor androgens increase during CRPC progression in correlation to PSA up-regulation. We show here that all enzymes necessary for androgen synthesis are expressed in prostate cancer tumors and some seem to be up-regulated during CRPC progression. Using an ex vivo radiotracing assays coupled to high-performance liquid chromatography-radiometric/mass spectrometry detection, we show that tumor explants isolated from CRPC progression are capable of de novo conversion of [(14)C]acetic acid to dihydrotestosterone and uptake of [(3)H]progesterone allows detection of the production of six other steroids upstream of dihydrotestosterone. This evidence suggests that de novo androgen synthesis may be a driving mechanism leading to CRPC progression following castration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Progression to the castration-resistant state is the incurable and lethal end stage of prostate cancer, and there is strong evidence that androgen receptor (AR) still plays a central role in this process. We hypothesize that knocking down AR will have a major effect on inhibiting growth of castration-resistant tumors. Experimental Design: Castration-resistant C4-2 human prostate cancer cells stably expressing a tetracycline-inducible AR-targeted short hairpin RNA (shRNA) were generated to directly test the effects of AR knockdown in C4-2 human prostate cancer cells and tumors. Results:In vitro expression of AR shRNA resulted in decreased levels of AR mRNA and protein, decreased expression of prostate-specific antigen (PSA), reduced activation of the PSA-luciferase reporter, and growth inhibition of C4-2 cells. Gene microarray analyses revealed that AR knockdown under hormone-deprived conditions resulted in activation of genes involved in apoptosis, cell cycle regulation, protein synthesis, and tumorigenesis. To ensure that tumors were truly castration-resistant in vivo, inducible AR shRNA expressing C4-2 tumors were grown in castrated mice to an average volume of 450 mm3. In all of the animals, serum PSA decreased, and in 50% of them, there was complete tumor regression and disappearance of serum PSA. Conclusions: Whereas castration is ineffective in castration-resistant prostate tumors, knockdown of AR can decrease serum PSA, inhibit tumor growth, and frequently cause tumor regression. This study is the first direct evidence that knockdown of AR is a viable therapeutic strategy for treatment of prostate tumors that have already progressed to the castration-resistant state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background L-type amino acid transporters (LATs) uptake neutral amino acids including L-leucine into cells, stimulating mammalian target of rapamycin complex 1 signaling and protein synthesis. LAT1 and LAT3 are overexpressed at different stages of prostate cancer, and they are responsible for increasing nutrients and stimulating cell growth. Methods We examined LAT3 protein expression in human prostate cancer tissue microarrays. LAT function was inhibited using a leucine analog (BCH) in androgen-dependent and -independent environments, with gene expression analyzed by microarray. A PC-3 xenograft mouse model was used to study the effects of inhibiting LAT1 and LAT3 expression. Results were analyzed with the Mann-Whitney U or Fisher exact tests. All statistical tests were two-sided. Results LAT3 protein was expressed at all stages of prostate cancer, with a statistically significant decrease in expression after 4–7 months of neoadjuvant hormone therapy (4–7 month mean = 1.571; 95% confidence interval = 1.155 to 1.987 vs 0 month = 2.098; 95% confidence interval = 1.962 to 2.235; P = .0187). Inhibition of LAT function led to activating transcription factor 4–mediated upregulation of amino acid transporters including ASCT1, ASCT2, and 4F2hc, all of which were also regulated via the androgen receptor. LAT inhibition suppressed M-phase cell cycle genes regulated by E2F family transcription factors including critical castration-resistant prostate cancer regulatory genes UBE2C, CDC20, and CDK1. In silico analysis of BCH-downregulated genes showed that 90.9% are statistically significantly upregulated in metastatic castration-resistant prostate cancer. Finally, LAT1 or LAT3 knockdown in xenografts inhibited tumor growth, cell cycle progression, and spontaneous metastasis in vivo. Conclusion Inhibition of LAT transporters may provide a novel therapeutic target in metastatic castration-resistant prostate cancer, via suppression of mammalian target of rapamycin complex 1 activity and M-phase cell cycle genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited treatment options for Castration Resistant Prostate Cancer (CRPC) still remain a major challenge. Despite therapeutic advances, most patients with malignant PCa have a poor prognosis. Since the year 2000, we have rapidly expanded our understanding of the molecular mechanisms underlying CRPC and this has led to an unprecedented number of new drug approvals within a short span of time. Recently, four new agents namely Abiraterone Acetate, Enzalutamide, Cabazitaxel, and Radium-223 have been shown to be effective in the post-chemotherapy setting in CRPC. The continued dependency of CRPC on androgen synthesis has seen the development of a number of new anti-androgen therapies, with abiraterone acetate and Enzalutamide being the most promising discoveries. Immunotherapeutic approaches have also found their niche in PCa with Sipuleucel-T shown to be effective in minimally asymptomatic CRPC. Research focussed on bone-targeting therapies has witnessed the arrival of promising new drugs with Denosumab and Radium-223 displaying improved survival of patients with CRPC. This review briefly discusses the findings and limitations from ongoing and completed clinical trials of novel treatments and regimens. In addition, potential mechanisms of therapy resistance and future challenges are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Androgen targeted therapies (ATT) are the most commonly used treatments in prostate cancer (PCa).While these therapies are initially effective, PCa cells are able to activate adaptive response pathways to survive these therapies and progress to castration resistant PCa (CRPC), a highly aggressive and ultimately lethal stage of the disease. Neuroendocrine transdifferentiation (NEtD), a process whereby PCa cells gain neuroendocrinelike characteristics, has been implicated in the development of CRPC. The objective of this study is to develop and characterise models of therapy-induced NEtD to investigate the role of this adaptive plasticity in the progression to CRPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite recent recognition that the epithelial-mesenchymal transition (EMT) program acts in a dynamic manner (termed Epithelial to Mesenchymal Plasticity or EMP) during carcinoma metastasis, it has largely been ignored in the discovery and development of EMT-targeted therapies. In part, this has stemmed from a lack of preclinical models that can mimic the full dynamic nature of EMP and the perception that the EMT-reverting transition [or mesenchymal-epithelial reverting transition; (MErT)] is a mere antithesis of EMT. The objective of this study was to develop the first PCa model capable of recapitulating the dynamic nature of EMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An association between the metabolic syndrome and reduced testosterone levels has been identified, and a specific inverse relationship between insulin and testosterone levels suggests that an important metabolic crosstalk exists between these two hormonal axes; however, the mechanisms by which insulin and androgens may be reciprocally regulated are not well described. Androgen-dependant gene pathways regulate the growth and maintenance of both normal and malignant prostate tissue, and androgen-deprivation therapy (ADT) in patients exploits this dependence when used to treat recurrent and metastatic prostate cancer resulting in tumour regression. A major systemic side effect of ADT includes induction of key features of the metabolic syndrome and the consistent feature of hyperinsulinaemia. Recent studies have specifically identified a correlation between elevated insulin and high-grade PCa and more rapid progression to castrate resistant disease. This paper examines the relationship between insulin and androgens in the context of prostate cancer progression. Prostate cancer patients present a promising cohort for the exploration of insulin stabilising agents as adjunct treatments for hormone deprivation or enhancers of chemosensitivity for treatment of advanced prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Castration is the standard therapy for advanced prostate cancer (PC). Although this treatment is initially effective, tumors invariably relapse as incurable, castration-resistant PC (CRPC). Adaptation of androgen-dependent PC cells to an androgen-depleted environment or selection of pre-existing,CRPC cells have been proposed as mechanisms of CRPC development. Stem cell (SC)-like PC cells have been implicated not only as tumor initiating/maintaining in PC but also as tumor-reinitiating cells in CRPC. Recently, castration-resistant cells expressing the NK3 homeobox 1 (Nkx3-1) (CARNs), the other luminal markers cytokeratin 18 (CK18) and androgen receptor (AR), and possessing SC properties, have been found in castrated mouse prostate and proposed as the cell-of-origin of CRPC. However, the human counterpart of CARNs has not been identified yet. Here, we demonstrate that in the human PC xenograft BM18, preexisting SC-like and neuroendocrine (NE) PC cells are selected by castration and survive as totally quiescent. SClike BM18 cells, displaying the SC markers aldehyde dehydrogenase 1A1 or NANOG, coexpress the luminal markers NKX3-1, CK18, and a low level of AR (ARlow) but not basal or NE markers. These CR luminal SC-like cells, but not NE cells, reinitiate BM18 tumor growth after androgen replacement. The ARlow seems to mediate directly both castration survival and tumor reinitiation. This study identifies for the first time in human PC SC-/CARN-like cells that may represent the cell-of-origin of tumor reinitiation as CRPC. This finding will be fundamental for refining the hierarchy among human PC cancer cells and may have important clinical implications.