128 resultados para Project 2007-001-EP : Interoperable Standards Development
em Queensland University of Technology - ePrints Archive
Resumo:
Since 1995 the buildingSMART International Alliance for Interoperability (buildingSMART)has developed a robust standard called the Industry Foundation Classes (IFC). IFC is an object oriented data model with related file format that has facilitated the efficient exchange of data in the development of building information models (BIM). The Cooperative Research Centre for Construction Innovation has contributed to the international effort in the development of the IFC standard and specifically the reinforced concrete part of the latest IFC 2x3 release. Industry Foundation Classes have been endorsed by the International Standards Organisation as a Publicly Available Specification (PAS) under the ISO label ISO/PAS 16739. For more details, go to http://www.tc184- sc4.org/About_TC184-SC4/About_SC4_Standards/ The current IFC model covers the building itself to a useful level of detail. The next stage of development for the IFC standard is where the building meets the ground (terrain) and with civil and external works like pavements, retaining walls, bridges, tunnels etc. With the current focus in Australia on infrastructure projects over the next 20 years a logical extension to this standard was in the area of site and civil works. This proposal recognises that there is an existing body of work on the specification of road representation data. In particular, LandXML is recognised as also is TransXML in the broader context of transportation and CityGML in the common interfacing of city maps, buildings and roads. Examination of interfaces between IFC and these specifications is therefore within the scope of this project. That such interfaces can be developed has already been demonstrated in principle within the IFC for Geographic Information Systems (GIS) project. National road standards that are already in use should be carefully analysed and contacts established in order to gain from this knowledge. The Object Catalogue for the Road Transport Sector (OKSTRA) should be noted as an example. It is also noted that buildingSMART Norway has submitted a proposal
Resumo:
After many years of development BIM (Building Information Modelling) is starting to achieve significant penetration into the building sector of the construction industry. This paper describes the current status of BIM and the drivers that are motivating the change from 2D CAD to BIM within the building sector. The paper then discusses what the implications of the technology underlying BIM may be for the civil construction sector of the construction industry. A project carried out by the Cooperative Research Centre for Construction Innovation is used as an example of this technology as well as several international examples.
Resumo:
This report presents the current state and approach in Building Information Modelling (BIM). The report is focussed at providing a desktop audit of the current state and capabilities of the products and applications supporting BIM. This includes discussion on BIM model servers as well as discipline specific applications, for which the distinction is explained below. The report presented here is aimed at giving a broad overview of the tools and applications with respect to their BIM capabilities and in no way claims to be an exhaustive report for individual tools. Chapter 4 of the report includes the research and development agendas pertaining to the BIM approach based on the observations and analysis from the desktop audit.
Resumo:
Building Information Modelling (BIM) is an information technology [IT] enabled approach to managing design data in the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry. BIM enables improved interdisciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. Despite the apparent benefits the adoption of BIM in practice has been slow. Workshops with industry focus groups were conducted to identify the industry needs, concerns and expectations from participants who had implemented BIM or were BIM “ready”. Factors inhibiting BIM adoption include lack of training, low business incentives, perception of lack of rewards, technological concerns, industry fragmentation related to uneven ICT adoption practices, contractual matters and resistance to changing current work practice. Successful BIM usage depends on collective adoption of BIM across the different disciplines and support by the client. The relationship of current work practices to future BIM scenarios was identified as an important strategy as the participants believed that BIM cannot be efficiently used with traditional practices and methods. The key to successful implementation is to explore the extent to which current work practices must change. Currently there is a perception that all work practices and processes must adopt and change for effective usage of BIM. It is acknowledged that new roles and responsibilities are emerging and that different parties will lead BIM on different projects. A contingency based approach to the problem of implementation was taken which relies upon integration of BIM project champion, procurement strategy, team capability analysis, commercial software availability/applicability and phase decision making and event analysis. Organizations need to understand: (a) their own work processes and requirements; (b) the range of BIM applications available in the market and their capabilities (c) the potential benefits of different BIM applications and their roles in different phases of the project lifecycle, and (d) collective supply chain adoption capabilities. A framework is proposed to support organizations selection of BIM usage strategies that meet their project requirements. Case studies are being conducted to develop the framework. The results of the preliminary design management case study is presented for contractor led BIM specific to the design and construct procurement strategy.
Resumo:
This paper discusses the preliminary findings of an ongoing research project aimed at developing a technological, operational and strategic analysis of adopting BIM in AEC/FM (Architecture-Engineering-Construction/Facility Management) industry as a collaboration tool. Outcomes of the project will provide specifications and guidelines as well as establish industry standards for implementing BIM in practice. This research primarily focuses on BIM model servers as a collaboration platform, and hence the guidelines are aimed at enhancing collaboration capabilities. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perception and expectations of BIM. Layout for case studies being undertaken is presented. These findings provide a base to develop comprehensive software specifications and national guidelines for BIM with particular emphasis on BIM model servers as collaboration platforms.
Resumo:
The Safety Effectiveness Indicators (SEI) Project has used extensive research to determine what safety effectiveness measures can be developed by industry, for industry use to improve its safety performance. These indicators can measure how effectively the 13 safety management tasks1 (SMTs) selected for this workbook are undertaken. Currently, positive performance indicators (PPIs) are only able to measure the number of activities undertaken. They do not provide information on whether each activity is being undertaken effectively, and therefore do not provide data which can be used by industry to target areas of focus and improvement. The initial workbook contained six SMTs, and was piloted on various construction sites during August 2008. The workbook was refined through feedback from the pilot, and 13 SMTs were used in a field trial during the months of October, November and December 2008. The project team also carried out 12 focus groups in Brisbane, Canberra, Sydney and Melbourne during April, May and June 2008, and developed an initial format of this workbook through these groups and team workshops. Simplification of the language was a recurring theme, and we have attempted to do this throughout the project. The challenge has been to ensure we keep the descriptions short, to the point and relevant to all companies, without making them too specific. The majority of the construction industry participants also requested an alteration to the scale used, so a ‘Yes’/‘No’/’Not applicable’ format is used in this workbook. This workbook, based on industry feedback, is for use on site by various construction companies and contains 13 SMTs. However, you are invited to personalise the SEI tools to better suit your individual company and workplaces.
Resumo:
Traditional business approaches do not take account of the rapid technological developments underpinning today's world. Further understanding the role of technology and its efficient management to build and maintain a competitive edge in business can allow project managers to more successfully manage organisations, and to adapt to and capitalise on, today’s rapidly changing environment. Strategic Technology Management links engineering, science and management principles to identify, choose, and implement the most effective means of attaining compatibility between internal skills and resources of an organisation and its competitive, economic and social environment. This paper reviews the rationale and the development of a new Strategic Technology Management subject in QUT’s Master of Project Management program. It discusses recent developments in the area of technology management from an international perspective, provides details of the curriculum developed and discusses the experience of completing two years of teaching the new program.
Resumo:
Islamic financing in Indonesia infrastructure projects development has not been optimally implemented. Therefore this paper serves as a catalyst to explore alternative financial scheme such as Islamic financing for infrastructure development. The purpose of this paper is to explore the enablers and barriers in implementing Islamic project financing for public infrastructure development. The findings are then culminated into enablers and barriers in the implementation of Islamic project financing. The two main enablers are the readily availability of huge fund that can be used to support infrastructure projects; and the acceptability of the concept of shariah-compliant financing. On the other hand, the barriers include: high cost of funding; lack of financial institution capability; lack of government policy and regulation; insufficient government support and commitment; conflict between infrastructure and Islamic finance business practices; profit oriented mindset; lack of understanding of Islamic project financing knowledge in infrastructure; and insufficient project preparation.
Resumo:
This chapter is focussed on the various financial instruments and incentives that have been implemented in a range of countries to encourage sustainable developments in all property sectors. It is an area that has undergone substantial change globally since 2008. Sustainable property development has been impacted by the Global Financial Crisis, particularly with regards to the availability of private sector funding and the requirements of funders who now have a more cautious approach to risk. Sustainability, and sometimes a lack of it, is increasingly viewed as a risk in some markets; it is also seen as an area in which governments, through creation of markets and through the use of fiscal instruments can seek to speed up the pace at which the economics of sustainable development makes good business sense. However, it is not just governments that provide the incentive for sustainability- or the dis-incentive for non-sustainable behaviours.
Resumo:
Purpose: This chapter discusses the opportunity of Islamic project financing implementation for public infrastructure development in Indonesia. Design/Methodology/Approach: This chapter, firstly, reviewed existing literature on Islamic finance to explore the applicability of Islamic financing in infrastructure development. Interviews were conducted as the first stage of Delphi method approach. This was then followed by reviewing Indonesia’s government policies and regulations in infrastructure industry and Islamic financing. Findings: This chapter enlightens the implementation of Islamic financing on infrastructure project financing in Indonesia. The findings indicate that the government policies and regulations on both infrastructure investment and Islamic financing support the implementation of Islamic project financing, whereas, an improvement is still needed in order to overarch infrastructure business and Islamic financing investment. Research: Financing framework development for Indonesia infrastructure projects. Limitations/Implications: The result reported comprises the preliminary study of Islamic project paper written based on published research papers and interviews. Furthermore, the data collected for the study are limited to the case of Indonesian infrastructure projects. Practical Implication: Islamic financing in Indonesia infrastructure projects development has not been optimally implemented. Therefore, this chapter serves as a catalyst to explore alternative financial scheme such as Islamic financing for infrastructure development. Originality/Value: This chapter highlights possibilities and obstacles in applying Islamic scheme to infrastructure project financing. This provides a framework to analyse the steps to implement Islamic financing successfully in infrastructure development.
Resumo:
Building Information Modelling (BIM) is an IT enabled technology that allows storage, management, sharing, access, update and use of all the data relevant to a project through out the project life-cycle in the form of a data repository. BIM enables improved inter-disciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. While the technology itself may not be new, and similar approaches have been in use in some other sectors like Aircraft and Automobile industry for well over a decade now, the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry is still to catch up with them in its ability to exploit the benefits of the IT revolution. Though the potential benefits of the technology in terms of knowledge sharing, project management, project co-ordination and collaboration are near to obvious, the adoption rate has been rather lethargic, inspite of some well directed efforts and availability of supporting commercial tools. Since the technology itself has been well tested over the years in some other domains the plausible causes must be rooted well beyond the explanation of the ‘Bell Curve of innovation adoption’. This paper discusses the preliminary findings of an ongoing research project funded by the Cooperative Research Centre for Construction Innovation (CRC-CI) which aims to identify these gaps and come up with specifications and guidelines to enable greater adoption of the BIM approach in practice. A detailed literature review is conducted that looks at some of the similar research reported in the recent years. A desktop audit of some of the existing commercial tools that support BIM application has been conducted to identify the technological issues and concerns, and a workshop was organized with industry partners and various players in the AEC industry for needs analysis, expectations and feedback on the possible deterrents and inhibitions surrounding the BIM adoption.