273 resultados para Pressure biofeedback unit
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Critically ill patients are at high risk for pressure ulcer (PrU) development due to their high acuity and the invasive nature of the multiple interventions and therapies they receive. With reported incidence rates of PrU development in the adult critical care population as high as 56%, the identification of patients at high risk of PrU development is essential. This paper will explore the association between PrU development and risk factors. It will also explore PrU development and the use of risk assessment scales for critically ill patients in adult intensive care units. Method: A literature search from 2000 to 2012 using the CINHAL, Cochrane Library, EBSCOHost, Medline (via EBSCOHost), PubMed, ProQuest and Google Scholar databases was conducted. Key words used were: pressure ulcer/s; pressure sore/s; decubitus ulcer/s; bed sore/s; critical care; intensive care; critical illness; prevalence; incidence; prevention; management; risk factor; risk assessment scale. Results: Nineteen articles were included in this review; eight studies addressing PrU risk factors, eight studies addressing risk assessment scales and three studies overlapping both. Results from the studies reviewed identified 28 intrinsic and extrinsic risk factors which may lead to PrU development. Development of a risk factor prediction model in this patient population, although beneficial, appears problematic due to many issues such as diverse diagnoses and subsequent patient needs. Additionally, several risk assessment instruments have been developed for early screening of patients at higher risk of developing PrU in the ICU. No existing risk assessment scales are valid for identification high risk critically ill patient,with the majority of scales potentially over-predicting patients at risk for PrU development. Conclusion: Research studies to inform the risk factors for potential pressure ulcer development are inconsistent. Additionally, there is no consistent or clear evidence which demonstrates any scale to better or more effective than another when used to identify the patients at risk for PrU development. Furthermore robust research is needed to identify the risk factors and develop valid scales for measuring the risk of PrU development in ICU.
Resumo:
The purpose of this study was to identify pressure ulcer (PU) incidence and risk factors that are associated with PU development in patients in two adult intensive care units (ICU) in Saudi Arabia. A prospective cohort study design was used. A total of 84 participants were screened second daily basis until discharge or death, over a consecutive 30-day period, out of which 33 participants with new PUs were identified giving a cumulative hospital-acquired PU incidence of 39·3% (33/84 participants). The incidence of medical devices-related PUs was 8·3% (7/84). Age, length of stay in the ICU, history of cardiovascular disease and kidney disease, infrequent repositioning, time of operation, emergency admission, mechanical ventilation and lower Braden Scale scores independently predicted the development of a PU. According to binary logistic regression analyses, age, longer stay in ICU and infrequent repositioning were significant predictors of all stages of PUs, while the length of stay in the ICU and infrequent repositioning were associated with the development of stages II-IV PUs. In conclusion, PU incidence rate was higher than that reported in other international studies. This indicates that urgent attention is required for PU prevention strategies in this setting.
Resumo:
With the continued development of renewable energy generation technologies and increasing pressure to combat the global effects of greenhouse warming, plug-in hybrid electric vehicles (PHEVs) have received worldwide attention, finding applications in North America and Europe. When a large number of PHEVs are introduced into a power system, there will be extensive impacts on power system planning and operation, as well as on electricity market development. It is therefore necessary to properly control PHEV charging and discharging behaviors. Given this background, a new unit commitment model and its solution method that takes into account the optimal PHEV charging and discharging controls is presented in this paper. A 10-unit and 24-hour unit commitment (UC) problem is employed to demonstrate the feasibility and efficiency of the developed method, and the impacts of the wide applications of PHEVs on the operating costs and the emission of the power system are studied. Case studies are also carried out to investigate the impacts of different PHEV penetration levels and different PHEV charging modes on the results of the UC problem. A 100-unit system is employed for further analysis on the impacts of PHEVs on the UC problem in a larger system application. Simulation results demonstrate that the employment of optimized PHEV charging and discharging modes is very helpful for smoothing the load curve profile and enhancing the ability of the power system to accommodate more PHEVs. Furthermore, an optimal Vehicle to Grid (V2G) discharging control provides economic and efficient backups and spinning reserves for the secure and economic operation of the power system
Resumo:
Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.
Resumo:
BACKGROUND: Studies have shown that nurse staffing levels, among many other factors in the hospital setting, contribute to adverse patient outcomes. Concerns about patient safety and quality of care have resulted in numerous studies being conducted to examine the relationship between nurse staffing levels and the incidence of adverse patient events in both general wards and intensive care units. AIM: The aim of this paper is to review literature published in the previous 10 years which examines the relationship between nurse staffing levels and the incidence of mortality and morbidity in adult intensive care unit patients. METHODS: A literature search from 2002 to 2011 using the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, and Australian digital thesis databases was undertaken. The keywords used were: intensive care; critical care; staffing; nurse staffing; understaffing; nurse-patient ratios; adverse outcomes; mortality; ventilator-associated pneumonia; ventilator-acquired pneumonia; infection; length of stay; pressure ulcer/injury; unplanned extubation; medication error; readmission; myocardial infarction; and renal failure. A total of 19 articles were included in the review. Outcomes of interest are patient mortality and morbidity, particularly infection and pressure ulcers. RESULTS: Most of the studies were observational in nature with variables obtained retrospectively from large hospital databases. Nurse staffing measures and patient outcomes varied widely across the studies. While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies concluded that a trend exists between increased nurse staffing levels and decreased adverse events. CONCLUSION: While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies demonstrated a trend between increased nurse staffing levels and decreased adverse patient outcomes in the intensive care unit which is consistent with previous literature. While further more robust research methodologies need to be tested in order to more confidently demonstrate this association and decrease the influence of the many other confounders to patient outcomes; this would be difficult to achieve in this field of research.
Resumo:
Aim: To describe the positioning of patients managed in an intensive care unit (ICU); assess how frequently these patients were repositioned; and determine if any specific factors influenced how, why or when patients were repositioned in the ICU. Background: Alterations in body position of ICU patients are important for patient comfort and are believed to prevent and/or treat pressure ulcers, improve respiratory function and combat the adverse effects of immobility. There is a paucity of research on the positioning of critically ill patients in Saudi Arabian ICUs. Design and Methods: A prospective observational study was undertaken. Participant demographic data were collected as were clinical factors (i.e. ventilation status, primary diagnosis, co-morbidities and Ramsay sedation score) and organizational factors (i.e. time of day, type of mattress or beds used, nurse/patient ratio and the patient's position). Clinical and some organization data were recorded over a continuous 48 hour period. Result: Twenty-eight participants were recruited to the study. No participant was managed in either a flat or prone position. Obese participants were most likely to be managed in a supine position. The mean time between turns was two hours. There was no significant association between the mean time between turns and the recorded variables related to patients' demographic and organizational considerations. Conclusion: Results indicate that patient positioning in the ICU was a direct result of unit policy - it appeared that patients were not repositioned based upon evaluation of their clinical condition but rather according to a two-hour ICU timetable
Resumo:
This paper describes an investigation into the effectiveness of using spray-on nano-particle reinforced polymer and aluminium foam as new types of retrofit material to prevent the breaching and collapse of unreinforced concrete masonry walls subjected to blast over a whole range of dynamic and impulsive regimes. Material models from the LSDYNA material library were used to model the behaviors of each of the materials and its interface for retrofitted and unretrofitted masonry walls. Available test data were used to validate the numerical models. Using the validated LS-DYNA numerical models, the pressure-impulse diagrams for retrofitted concrete masonry walls were constructed. The efficiency of using these retrofits to strengthen the unreinforced concrete masonry unit (CMU) walls under various pressures and impulses was investigated using pressure-impulse diagrams. Comparisons were made to find the most efficient retrofits for masonry walls against blasts.
Intra-arterial waveform analysis: a study of senior nurse knowledge in a general intensive care unit
Resumo:
The aim of this small-scale study was to assess what knowledge senior nurses within a general intensive care unit (GICU) had in relation to intra-arterial blood pressure (IABP) waveform analysis. Its core objective was: To assess what knowledge was held by the senior nursing team with regard to arterial waveform interpretation, arterial waveform morphology and the technical aspects associated with arterial waveform monitoring.
Resumo:
“Hybrid” hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal–hydrogen systems correspond to low enthalpies of hydrogen absorption–desorption. This decreases the calorimetric effects of the hydride formation–decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading—removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to −20 kJ/mol H2 were studied to investigate the hydrogenation mechanism and kinetics: CeNi5–D2 and ZrFe2−xAlx (x = 0.02; 0.04; 0.20)–D2. The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi5 intermetallic resulted in CeNi5D6.3 with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce2Ni2 and Ni4 tetrahedra, and Ce2Ni3 half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al-modified Laves-type C15 ZrFe2−xAlx intermetallics, deuteration showed very fast kinetics of H/D exchange and resulted in a volume increase of the FCC unit cells of 23.5% for ZrFe1.98Al0.02D2.9(1). Deuterium content, hysteresis of H/D uptake and release, unit cell expansion and stability of the hydrides systematically change with the amount of Al content. In the deuteride D atoms exclusively occupy the Zr2(Fe,Al)2 tetrahedra. Observed interatomic distances are Zr–D = 1.98–2.11; (Fe, Al)–D = 1.70–1.75A˚ . Hydrogenation slightly increases the magnetic moment of the Fe atoms in ZrFe1.98Al0.02 and ZrFe1.96Al0.04 from 1.9 �B at room temperature for the alloy to 2.2 �B for its deuteride.
Resumo:
Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.
Resumo:
The present study explores reproducing the closest geometry of a high pressure ratio single stage radial-inflow turbine applied in the Sundstrans Power Systems T-100 Multipurpose Small Power Unit. The commercial software ANSYS-Vista RTD along with a built in module, BladeGen, is used to conduct a meanline design and create 3D geometry of one flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Results are compared with numerical and experimental data published in the literature in order to generate the exact geometry of the existing turbine and validate the numerical results against the experimental ones.
Resumo:
Purpose To test an interventional patient skin integrity bundle, InSPiRE protocol, on the impact of pressure injuries (PrIs) in critically ill patients in an Australian adult intensive care unit (ICU). Methods Before and after design was used where the group of patients receiving the intervention (InSPiRE protocol) was compared with a similar control group who received standard care. Data collected included demographic and clinical variables, skin assessment, PrI presence and stage, and a Sequential Organ Failure Assessment (SOFA) score. Results Overall, 207 patients were enrolled, 105 in the intervention group and 102 in the control group. Most patients were men, mean age 55. The groups were similar on major demographic variables (age, SOFA scores, ICU length of stay). Pressure injury cumulative incidence was significantly lower in the intervention group (18%) compared to the control group for skin injuries(30.4%) (χ2=4.271, df=1, p=0.039) and mucous injuries (t test =3.27, p=<0.001) . Significantly fewer PrIs developing over time in the intervention group (Logrank= 11.842, df=1, p=<0.001) and patients developed fewer skin injuries (>3 PrIs/patient = 1/105) compared with the control group (>3 injuries/patient = 10/102) (p=0.018). Conclusion The intervention group, recieving the InSPiRE protocol, had lower PrI cumulative incidence, and reduced number and severity of PrIs that developed over time. Systematic and ongoing assessment of the patient's skin and PrI risk as well as implementation of tailored prevention measures are central to preventing PrIs.