359 resultados para Predictive modeling

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical comparison of oil samples is an integral part of oil spill identification, which deals with the process of linking an oil spill with its source of origin. In current practice, a frequentist hypothesis test is often used to evaluate evidence in support of a match between a spill and a source sample. As frequentist tests are only able to evaluate evidence against a hypothesis but not in support of it, we argue that this leads to unsound statistical reasoning. Moreover, currently only verbal conclusions on a very coarse scale can be made about the match between two samples, whereas a finer quantitative assessment would often be preferred. To address these issues, we propose a Bayesian predictive approach for evaluating the similarity between the chemical compositions of two oil samples. We derive the underlying statistical model from some basic assumptions on modeling assays in analytical chemistry, and to further facilitate and improve numerical evaluations, we develop analytical expressions for the key elements of Bayesian inference for this model. The approach is illustrated with both simulated and real data and is shown to have appealing properties in comparison with both standard frequentist and Bayesian approaches

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar + CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using advanced visualization techniques, a comprehensive visualization of all the stages of the self-organized growth of internetworked nanostructures on plasma-exposed surface has been made. Atomistic kinetic Monte Carlo simulation for the initial stage of deposition, with 3-D visualization of the whole system and half-tone visualization of the density field of the adsorbed atoms, makes it possible to implement a multiscale predictive modeling of the development of the nanoscale system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable calculations of the electron/ion energy losses in low-pressure thermally nonequilibrium low-temperature plasmas are indispensable for predictive modeling related to numerous applications of such discharges. The commonly used simplified approaches to calculation of electron/ion energy losses to the chamber walls use a number of simplifying assumptions that often do not account for the details of the prevailing electron energy distribution function (EEDF) and overestimate the contributions of the electron losses to the walls. By direct measurements of the EEDF and careful calculation of contributions of the plasma electrons in low-pressure inductively coupled plasmas, it is shown that the actual losses of kinetic energy of the electrons and ions strongly depend on the EEDF. It is revealed that the overestimates of the total electron/ion energy losses to the walls caused by improper assumptions about the prevailing EEDF and about the ability of the electrons to pass through the repulsive potential of the wall may lead to significant overestimates that are typically in the range between 9 and 32%. These results are particularly important for the development of power-saving strategies for operation of low-temperature, low-pressure gas discharges in diverse applications that require reasonably low power densities. © 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endometriosis is a common gynecological disease associated with pelvic pain and subfertility. We conducted a genome-wide association study (GWAS) in 3,194 individuals with surgically confirmed endometriosis (cases) and 7,060 controls from Australia and the UK. Polygenic predictive modeling showed significantly increased genetic loading among 1,364 cases with moderate to severe endometriosis. The strongest association signal was on 7p15.2 (rs12700667) for 'all' endometriosis (P = 2.6 x 10(-)(7), odds ratio (OR) = 1.22, 95% CI 1.13-1.32) and for moderate to severe disease (P = 1.5 x 10(-)(9), OR = 1.38, 95% CI 1.24-1.53). We replicated rs12700667 in an independent cohort from the United States of 2,392 self-reported, surgically confirmed endometriosis cases and 2,271 controls (P = 1.2 x 10(-)(3), OR = 1.17, 95% CI 1.06-1.28), resulting in a genome-wide significant P value of 1.4 x 10(-)(9) (OR = 1.20, 95% CI 1.13-1.27) for 'all' endometriosis in our combined datasets of 5,586 cases and 9,331 controls. rs12700667 is located in an intergenic region upstream of the plausible candidate genes NFE2L3 and HOXA10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a seminal data mining article, Leo Breiman [1] argued that to develop effective predictive classification and regression models, we need to move away from the sole dependency on statistical algorithms and embrace a wider toolkit of modeling algorithms that include data mining procedures. Nevertheless, many researchers still rely solely on statistical procedures when undertaking data modeling tasks; the sole reliance on these procedures has lead to the development of irrelevant theory and questionable research conclusions ([1], p.199). We will outline initiatives that the HPC & Research Support group is undertaking to engage researchers with data mining tools and techniques; including a new range of seminars, workshops, and one-on-one consultations covering data mining algorithms, the relationship between data mining and the research cycle, and limitations and problems with these new algorithms. Organisational limitations and restrictions to these initiatives are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Two symposia on “cardiovascular diseases and vulnerable plaques” Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening. Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.