363 resultados para Predictive Mean Squared Efficiency

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling strategies are developed based on the idea of ranked set sampling (RSS) to increase efficiency and therefore to reduce the cost of sampling in fishery research. The RSS incorporates information on concomitant variables that are correlated with the variable of interest in the selection of samples. For example, estimating a monitoring survey abundance index would be more efficient if the sampling sites were selected based on the information from previous surveys or catch rates of the fishery. We use two practical fishery examples to demonstrate the approach: site selection for a fishery-independent monitoring survey in the Australian northern prawn fishery (NPF) and fish age prediction by simple linear regression modelling a short-lived tropical clupeoid. The relative efficiencies of the new designs were derived analytically and compared with the traditional simple random sampling (SRS). Optimal sampling schemes were measured by different optimality criteria. For the NPF monitoring survey, the efficiency in terms of variance or mean squared errors of the estimated mean abundance index ranged from 114 to 199% compared with the SRS. In the case of a fish ageing study for Tenualosa ilisha in Bangladesh, the efficiency of age prediction from fish body weight reached 140%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal image properties such as contrast and spatial frequency play important roles in the development of normal vision. For example, visual environments comprised solely of low contrast and/or low spatial frequencies induce myopia. The visual image is processed by the retina and it then locally controls eye growth. In terms of the retinal neurotransmitters that link visual stimuli to eye growth, there is strong evidence to suggest involvement of the retinal dopamine (DA) system. For example, effectively increasing retinal DA levels by using DA agonists can suppress the development of form-deprivation myopia (FDM). However, whether visual feedback controls eye growth by modulating retinal DA release, and/or some other factors, is still being elucidated. This thesis is chiefly concerned with the relationship between the dopaminergic system and retinal image properties in eye growth control. More specifically, whether the amount of retinal DA release reduces as the complexity of the image degrades was determined. For example, we investigated whether the level of retinal DA release decreased as image contrast decreased. In addition, the effects of spatial frequency, spatial energy distribution slope, and spatial phase on retinal DA release and eye growth were examined. When chicks were 8-days-old, a cone-lens imaging system was applied monocularly (+30 D, 3.3 cm cone). A short-term treatment period (6 hr) and a longer-term treatment period (4.5 days) were used. The short-term treatment tests for the acute reduction in DA release by the visual stimulus, as is seen with diffusers and lenses, whereas the 4.5 day point tests for reduction in DA release after more prolonged exposure to the visual stimulus. In the contrast study, 1.35 cyc/deg square wave grating targets of 95%, 67%, 45%, 12% or 4.2% contrast were used. Blank (0% contrast) targets were included for comparison. In the spatial frequency study, both sine and square wave grating targets with either 0.017 cyc/deg and 0.13 cyc/deg fundamental spatial frequencies and 95% contrast were used. In the spectral slope study, 30% root-mean-squared (RMS) contrast fractal noise targets with spectral fall-off of 1/f0.5, 1/f and 1/f2 were used. In the spatial alignment study, a structured Maltese cross (MX) target, a structured circular patterned (C) target and the scrambled versions of these two targets (SMX and SC) were used. Each treatment group comprised 6 chicks for ocular biometry (refraction and ocular dimension measurement) and 4 for analysis of retinal DA release. Vitreal dihydroxyphenylacetic acid (DOPAC) was analysed through ion-paired reversed phase high performance liquid chromatography with electrochemical detection (HPLC-ED), as a measure of retinal DA release. For the comparison between retinal DA release and eye growth, large reductions in retinal DA release possibly due to the decreased light level inside the cone-lens imaging system were observed across all treated eyes while only those exposed to low contrast, low spatial frequency sine wave grating, 1/f2, C and SC targets had myopic shifts in refraction. Amongst these treatment groups, no acute effect was observed and longer-term effects were only found in the low contrast and 1/f2 groups. These findings suggest that retinal DA release does not causally link visual stimuli properties to eye growth, and these target induced changes in refractive development are not dependent on the level of retinal DA release. Retinal dopaminergic cells might be affected indirectly via other retinal cells that immediately respond to changes in the image contrast of the retinal image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the effect of orthokeratology on peripheral aberrations in two myopic volunteers. Methods: The subjects wore reverse geometry orthokeratology lenses overnight and were monitored for 2 weeks of wear. They underwent corneal topography, peripheral refraction (out to ±34° along the horizontal visual field) and peripheral aberration measurements across the 42° × 32° central visual field using a modified Hartmann-Shack aberrometer. Results: Spherical equivalent refraction was corrected for the central 25° of the visual fields beyond which it gradually returned to its preorthokeratology values. There were increases in axial coma, spherical aberration, higher order root mean square aberrations, and total root-mean-squared aberrations (excluding defocus). The rates of change of vertical and horizontal coma across the field changed in sign. Total root mean square aberrations showed a quadratic rate of change across the visual field which was greater subsequent to orthokeratology. Conclusion: Although orthokeratology can correct peripheral relative hypermetropia it induces dramatic increases in higher-order aberrations across the field

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biased estimation has the advantage of reducing the mean squared error (MSE) of an estimator. The question of interest is how biased estimation affects model selection. In this paper, we introduce biased estimation to a range of model selection criteria. Specifically, we analyze the performance of the minimum description length (MDL) criterion based on biased and unbiased estimation and compare it against modern model selection criteria such as Kay's conditional model order estimator (CME), the bootstrap and the more recently proposed hook-and-loop resampling based model selection. The advantages and limitations of the considered techniques are discussed. The results indicate that, in some cases, biased estimators can slightly improve the selection of the correct model. We also give an example for which the CME with an unbiased estimator fails, but could regain its power when a biased estimator is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD study examines whether water allocation becomes more productive when it is re-allocated from 'low' to 'high' efficient alternative uses in village irrigation systems (VISs) in Sri Lanka. Reservoir-based agriculture is a collective farming economic activity, which inter-sectoral allocation of water is assumed to be inefficient due to market imperfections and weak user rights. Furthermore, the available literature shows that a „head-tail syndrome. is the most common issue for intra-sectoral water management in „irrigation. agriculture. This research analyses the issue of water allocation by using primary data collected from two surveys of 460 rice farmers and 325 fish farming groups in two administrative districts in Sri Lanka. Technical efficiency estimates are undertaken for both rice farming and culture-based fisheries (CBF) production. The equi-marginal principle is applied for inter and intra-sectoral allocation of water. Welfare benefits of water re-allocation are measured through consumer surplus estimation. Based on these analyses, the overall findings of the thesis can be summarised as follows. The estimated mean technical efficiency (MTE) for rice farming is 73%. For CBF production, the estimated MTE is 33%. The technical efficiency distribution is skewed to the left for rice farming, while it skewed to the right for CBF production. The results show that technical efficiency of rice farming can be improved by formalising transferability of land ownership and, therefore, water user rights by enhancing the institutional capacity of Farmer Organisations (FOs). Other effective tools for improving technical efficiency of CBF production are strengthening group stability of CBF farmers, improving the accessibility of official consultation, and attracting independent investments. Inter-sectoral optimal allocation shows that the estimated inefficient volume of water in rice farming, which can be re-allocated for CBF production, is 32%. With the application of successive policy instruments (e.g., a community transferable quota system and promoting CBF activities), there is potential for a threefold increase in marginal value product (MVP) of total reservoir water in VISs. The existing intra-sectoral inefficient volume of water use in tail-end fields and head-end fields can potentially be removed by reducing water use by 10% and 23% respectively and re-allocating this to middle fields. This re-allocation may enable a twofold increase in MVP of water used in rice farming without reducing the existing rice output, but will require developing irrigation practices to facilitate this re-allocation. Finally, the total productivity of reservoir water can be increased by responsible village level institutions and primary level stakeholders (i.e., co-management) sharing responsibility of water management, while allowing market forces to guide the efficient re-allocation decisions. This PhD has demonstrated that instead of farmers allocating water between uses haphazardly, they can now base their decisions on efficient water use with a view to increasing water productivity. Such an approach, no doubt will enhance farmer incomes and community welfare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of hydrotherapy on time-trial performance and cardiac parasympathetic reactivation during recovery from intense training. On three occasions, 18 well-trained cyclists completed 60 min high-intensity cycling, followed 20 min later by one of three 10-min recovery interventions: passive rest (PAS), cold water immersion (CWI), or contrast water immersion (CWT). The cyclists then rested quietly for 160 min with R-R intervals and perceptions of recovery recorded every 30 min. Cardiac parasympathetic activity was evaluated using the natural logarithm of the square root of mean squared differences of successive R-R intervals (ln rMSSD). Finally, the cyclists completed a work-based cycling time trial. Effects were examined using magnitude-based inferences. Differences in time-trial performance between the three trials were trivial. Compared with PAS, general fatigue was very likely lower for CWI (difference [90% confidence limits; -12% (-18; -5)]) and CWT [-11% (-19; -2)]. Leg soreness was almost certainly lower following CWI [-22% (-30; -14)] and CWT [-27% (-37; -15)]. The change in mean ln rMSSD following the recovery interventions (ln rMSSD(Post-interv)) was almost certainly higher following CWI [16.0% (10.4; 23.2)] and very likely higher following CWT [12.5% (5.5; 20.0)] compared with PAS, and possibly higher following CWI [3.7% (-0.9; 8.4)] compared with CWT. The correlations between performance, ln rMSSD(Post-interv) and perceptions of recovery were unclear. A moderate correlation was observed between ln rMSSD(Post-interv) and leg soreness [r = -0.50 (-0.66; -0.29)]. Although the effects of CWI and CWT on performance were trivial, the beneficial effects on perceptions of recovery support the use of these recovery strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To use a large wavefront database of a clinical population to investigate relationships between refractions and higher order aberrations and between aberrations of right and left eyes. Methods: Third and fourth-order aberration coefficients and higher-order root-mean-squared aberrations (HO RMS), scaled to a pupil size of 4.5 mm diameter, were analysed in a population of about 24,000 patients from Carl Zeiss Vision's European wavefront database. Correlations were determined between the aberrations and the variables of refraction, near addition and cylinder. Results: Most aberration coefficients were significantly dependent upon these variables, but the proportions of aberrations that could be explained by these factors were less than 2% except for spherical aberration (12%), horizontal coma (9%) and HO RMS (7%). Near addition was the major contributor for horizontal coma (8.5% out of 9.5%) and spherical equivalent was the major contributor for spherical aberration (7.7% out of 11.6%). Interocular correlations were highly significant for all aberration coefficients, varying between 0.16 and 0.81. Anisometropia was a variable of significance for three aberrations (vertical coma, secondary astigmatism and tetrafoil), but little importance can be placed on this because of the small proportions of aberrations that can be explained by refraction (all less than 1.0 %). Conclusions: Most third- and fourth-order aberration coefficients were significantly dependent upon spherical equivalent, near addition and cylinder, but only horizontal coma (9%) and spherical aberration (12%) showed dependencies of greater than 2%. Interocular correlations were highly significant for all aberration coefficients, but anisometropia had little influence on aberration coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. METHODS: There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System III. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. RESULTS: For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P < 0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P < 0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient = -0.63, P < 0.01) and age (standardized beta coefficient = 0.26, P < 0.01). CONCLUSIONS: MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.