54 resultados para Precision timed machines
em Queensland University of Technology - ePrints Archive
Resumo:
Wynne and Schaffer (2003) have highlighted both the strong growth of gambling activity in recent years, and the revenue streams this has generated for governments and communities. Gambling activities and the revenues derived from them have, unsurprisingly, therefore also been seen as a way in which to increase economic development in deprived areas (Jinkner-Lloyd, 1996). Consequently, according to Brown et al (2003), gambling is now a large taxation revenue earner for many western governments, at both federal and state levels, worldwide (for example UK, USA, Australia). In size and importance, the Australian gambling industry in particular has grown significantly over the last three decades, experiencing a fourfold increase in real gambling turnover. There are, however, also concerns expressed about gambling and Electronic Gaming in particular, as illustrated in economic, social and ethical terms in Oddo (1997). There are also spatial aspects to understanding these issues. Marshall’s (1998) study, for example, highlights that benefits from gambling are more likely to accrue at the macro as opposed to the local level, because of centralised tax gathering and spending of tax revenues, whilst localities may suffer from displacement of activities with higher multipliers than the institutions with EGMs that replace them. This also highlights a regional context of costs, where benefits accrue to the centre, but the costs accrue to the regions and localities, as simultaneously resources leave those communities through both the gambling activities themselves (in the form of revenue for the EGM owners), and the government (through taxes).
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
Integrity of Real Time Kinematic (RTK) positioning solutions relates to the confidential level that can be placed in the information provided by the RTK system. It includes the ability of the RTK system to provide timely valid warnings to users when the system must not be used for the intended operation. For instance, in the controlled traffic farming (CTF) system that controls traffic separates wheel beds and root beds, RTK positioning error causes overlap and increases the amount of soil compaction. The RTK system’s integrity capacity can inform users when the actual positional errors of the RTK solutions have exceeded Horizontal Protection Levels (HPL) within a certain Time-To-Alert (TTA) at a given Integrity Risk (IR). The later is defined as the probability that the system claims its normal operational status while actually being in an abnormal status, e.g., the ambiguities being incorrectly fixed and positional errors having exceeded the HPL. The paper studies the required positioning performance (RPP) of GPS positioning system for PA applications such as a CTF system, according to literature review and survey conducted among a number of farming companies. The HPL and IR are derived from these RPP parameters. A RTK-specific rover autonomous integrity monitoring (RAIM) algorithm is developed to determine the system integrity according to real time outputs, such as residual square sum (RSS), HDOP values. A two-station baseline data set is analyzed to demonstrate the concept of RTK integrity and assess the RTK solution continuity, missed detection probability and false alarm probability.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
Objective • Feasibility programme for on-board mass (OBM) monitoring of heavy vehicles (HVs) • Australian road authorities through Transport Certification Australia (TCA) • Accuracy of contemporary, commercially-available OBM units in Australia • Results need to be addressed/incorporated into specifications for Stage 2 of Intelligent Access Program (IAP) by Transport Certification Australia
Resumo:
VMSCRIPT is a scripting language designed to allow small programs to be compiled for a range of generated tiny virtual machines, suitable for sensor network devices. The VMSCRIPT compiler is an optimising compiler designed to allow quick re-targeting, based on a template, code rewriting model. A compiler backend can be specified at the same time as a virtual machine, with the compiler reading the specification and using it as a code generator.
Resumo:
The use of artificial neural networks (ANNs) to identify and control induction machines is proposed. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics, and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Both systems are inherently adaptive as well as self-commissioning. The current controller is a completely general nonlinear controller which can be used together with any drive algorithm. Various advantages of these control schemes over conventional schemes are cited, and the combined speed and current control scheme is compared with the standard vector control scheme
Resumo:
This paper proposes the use of artificial neural networks (ANNs) to identify and control an induction machine. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics; and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Various advantages of these control schemes over other conventional schemes are cited and the performance of the combined speed and current control scheme is compared with that of the standard vector control scheme
Resumo:
The role of particular third sector organisations, Social Clubs, in supporting gambling through the use of EGMs in venues presents as a difficult social issue. Social Clubs gain revenue from gambling activities; but also contribute to social well-being through the provision of services to communities. The revenues derived from gambling in specific geographic locales has been seen by government as a way to increase economic development particularly in deprived areas. However there are also concerns about accessibility of low-income citizens to Electronic Gaming Machines (EGMS) and the high level of gambling overall in these deprived areas. We argue that social capital can be viewed as a guard against deleterious effects of unconstrained use of EGM gambling in communities. However, it is contended that social capital may also be destroyed by gambling activity if commercial business actors are able to use EGMs without community obligations to service provision. This paper examines access to gambling through EGMs and its relationship to social capital and the consequent effect on community resilience, via an Australian case study. The results highlight the potential two-way relationship between gambling and volunteering, such that volunteering (and social capital more generally) may help protect against problems of gambling, but also that volunteering as an activity may be damaged by increased gambling activity. This suggests that, regardless of the direction of causation, it is necessary to build up social capital via volunteering and other social capital activities in areas where EGMS are concentrated. The study concludes that Social Clubs using EGMs to derive funds are uniquely positioned within the community to develop programs that foster social capital creation and build community resilience in deprived areas.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.