143 resultados para Potomac River Estuary--Maps, Manuscript.
em Queensland University of Technology - ePrints Archive
Resumo:
Ross River virus (RRV) is a mosquito-borne member of the genus Alphavirus that causes epidemic polyarthritis in humans, costing the Australian health system at least US$10 million annually. Recent progress in RRV vaccine development requires accurate assessment of RRV genetic diversity and evolution, particularly as they may affect the utility of future vaccination. In this study, we provide novel RRV genome sequences and investigate the evolutionary dynamics of RRV from time-structured E2 gene datasets. Our analysis indicates that, although RRV evolves at a similar rate to other alphaviruses (mean evolutionary rate of approx. 8x10(-4) nucleotide substitutions per site year(-1)), the relative genetic diversity of RRV has been continuously low through time, possibly as a result of purifying selection imposed by replication in a wide range of natural host and vector species. Together, these findings suggest that vaccination against RRV is unlikely to result in the rapid antigenic evolution that could compromise the future efficacy of current RRV vaccines.
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
Floods are among the most devastating events that affect primarily tropical, archipelagic countries such as the Philippines. With the current predictions of climate change set to include rising sea levels, intensification of typhoon strength and a general increase in the mean annual precipitation throughout the Philippines, it has become paramount to prepare for the future so that the increased risk of floods on the country does not translate into more economic and human loss. Field work and data gathering was done within the framework of an internship at the former German Technical Cooperation (GTZ) in cooperation with the Local Government Unit of Ormoc City, Leyte, The Philippines, in order to develop a dynamic computer based flood model for the basin of the Pagsangaan River. To this end, different geo-spatial analysis tools such as PCRaster and ArcGIS, hydrological analysis packages and basic engineering techniques were assessed and implemented. The aim was to develop a dynamic flood model and use the development process to determine the required data, availability and impact on the results as case study for flood early warning systems in the Philippines. The hope is that such projects can help to reduce flood risk by including the results of worst case scenario analyses and current climate change predictions into city planning for municipal development, monitoring strategies and early warning systems. The project was developed using a 1D-2D coupled model in SOBEK (Deltares Hydrological modelling software package) and was also used as a case study to analyze and understand the influence of different factors such as land use, schematization, time step size and tidal variation on the flood characteristics. Several sources of relevant satellite data were compared, such as Digital Elevation Models (DEMs) from ASTER and SRTM data, as well as satellite rainfall data from the GIOVANNI server (NASA) and field gauge data. Different methods were used in the attempt to partially calibrate and validate the model to finally simulate and study two Climate Change scenarios based on scenario A1B predictions. It was observed that large areas currently considered not prone to floods will become low flood risk (0.1-1 m water depth). Furthermore, larger sections of the floodplains upstream of the Lilo- an’s Bridge will become moderate flood risk areas (1 - 2 m water depth). The flood hazard maps created for the development of the present project will be presented to the LGU and the model will be used to create a larger set of possible flood prone areas related to rainfall intensity by GTZ’s Local Disaster Risk Management Department and to study possible improvements to the current early warning system and monitoring of the basin section belonging to Ormoc City; recommendations about further enhancement of the geo-hydro-meteorological data to improve the model’s accuracy mainly on areas of interest will also be presented at the LGU.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
The spatial and temporal variations of Ross River virus infections reported in Queensland, Australia, between 1985 and 1996 were studied by using the Geographic Information System. The notified cases of Ross River virus infection came from 489 localities between 1985 and 1988, 805 between 1989 and 1992, and 1,157 between 1993 and 1996 (chi2(df = 2) = 680.9; P < 0.001). There was a marked increase in the number of localities where the cases were reported by 65 percent for the period of 1989-1992 and 137 percent for 1993-1996, compared with that for 1985-1988. The geographic distribution of the notified Ross River virus cases has expanded in Queensland over recent years. As Ross River virus disease has impacted considerably on tourism and industry, as well as on residents of affected areas, more research is required to explore the causes of the geographic expansion of the notified Ross River virus infections.