14 resultados para Postures
em Queensland University of Technology - ePrints Archive
Resumo:
Blast mats that can be retrofitted to the floor of military vehicles are considered to reduce the risk of injury from under‐vehicle explosions. Anthropometric test devices (ATDs) are validated for use only in the seated position. The aim of this study was to use a traumatic injury simulator fitted with 3 different blast mats in order to assess the ability of 2 ATD designs to evaluate the protective capacity of the mats in 2 occupant postures under 2 severities. Tests were performed for each combination of mat design, ATD, severity and posture using an antivehicle under‐belly injury simulator. The differences between mitigation systems were larger under the H‐III compared to the MiL‐Lx. There was little difference in how the 2 ATDs and how posture ranked the mitigation systems. Results from this study suggest that conclusions obtained by testing in the seated position can be extrapolated to the standing. However, the different percentage reductions observed in the 2 ATDs suggests different levels of protection. It is therefore unclear which ATD should be used to assess such mitigation systems. A correlation between cadavers and ATDs on the protection offered by blast mats is required in order to elucidate this issue.
Resumo:
Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
Background Physiotherapy and occupational therapy are two professions at high risk of work related musculoskeletal disorders (WRMD). This investigation aimed to identify risk factors for WRMD as perceived by the health professionals working in these roles (Aim 1), as well as current and future strategies they perceive will allow them to continue to work in physically demanding clinical roles (Aim 2). Methods A two phase exploratory investigation was undertaken. The first phase included a survey administered via a web based platform with qualitative open response items. The second phase involved four focus group sessions which explored topics obtained from the survey. Thematic analysis of qualitative data from the survey and focus groups was undertaken. Results Overall 112 (34.3%) of invited health professionals completed the survey; 66 (58.9%) were physiotherapists and 46 (41.1%) were occupational therapists. Twenty-four health professionals participated in one of four focus groups. The risk factors most frequently perceived by health professionals included: work postures and movements, lifting or carrying, patient related factors and repetitive tasks. The six primary themes for strategies to allow therapists to continue to work in physically demanding clinical roles included: organisational strategies, workload or work allocation, work practices, work environment and equipment, physical condition and capacity, and education and training. Conclusions Risk factors as well as current and potential strategies for reducing WRMD amongst these health professionals working in clinically demanding roles have been identified and discussed. Further investigation regarding the relative effectiveness of these strategies is warranted.
Resumo:
The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.
Resumo:
This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 subphases in youth soccer. Eight male developing soccer players (age: 11.8+0.4 years; training experience: 3.6+1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91+0.34) were identified as key features of an attacking player’s success. A lead-lag relation attributed to a defending player (34% around 7308 values) and a more predictable coordination mode (ApEn: 0.65+0.27, P50.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker’s actions.
Resumo:
Background Overweight and obesity has become a serious public health problem in many parts of the world. Studies suggest that making small changes in daily activity levels such as “breaking-up” sedentary time (i.e., standing) may help mitigate the health risks of sedentary behavior. The aim of the present study was to examine time spent in standing (determined by count threshold), lying, and sitting postures (determined by inclinometer function) via the ActiGraph GT3X among sedentary adults with differing weight status based on body mass index (BMI) categories. Methods Participants included 22 sedentary adults (14 men, 8 women; mean age 26.5 ± 4.1 years). All subjects completed the self-report International Physical Activity Questionnaire to determine time spent sitting over the previous 7 days. Participants were included if they spent seven or more hours sitting per day. Postures were determined with the ActiGraph GT3X inclinometer function. Participants were instructed to wear the accelerometer for 7 consecutive days (24 h a day). BMI was categorized as: 18.5 to <25 kg/m2 as normal, 25 to <30 kg/m2 as overweight, and ≥30 kg/m2 as obese. Results Participants in the normal weight (n = 10) and overweight (n = 6) groups spent significantly more time standing (after adjustment for moderate-to-vigorous intensity physical activity and wear-time) (6.7 h and 7.3 h respectively) and less time sitting (7.1 h and 6.9 h respectively) than those in obese (n = 6) categories (5.5 h and 8.0 h respectively) after adjustment for wear-time (p < 0.001). There were no significant differences in standing and sitting time between normal weight and overweight groups (p = 0.051 and p = 0.670 respectively). Differences were not significant among groups for lying time (p = 0.55). Conclusion This study described postural allocations standing, lying, and sitting among normal weight, overweight, and obese sedentary adults. The results provide additional evidence for the use of increasing standing time in obesity prevention strategies.
Resumo:
Background Low levels of physical activity and high levels of sedentary behavior (SB) are major public health concerns. This study was designed to develop and validate the 7-day Sedentary (S) and Light Intensity Physical Activity (LIPA) Log (7-day SLIPA Log), a self-report measure of specific daily behaviors. Method To develop the log, 62 specific SB and LIPA behaviors were chosen from the Compendium of Physical Activities. Face-to-face interviews were conducted with 32 sedentary volunteers to identify domains and behaviors of SB and LIPA. To validate the log, a further 22 sedentary adults were recruited to wear the GT3X for 7 consecutive days and nights. Results Pearson correlations (r) between the 7-day SLIPA Log and GT3X were significant for sedentary (r =.86, p < 0.001), for LIPA (r =.80, p < 0.001). Lying and sitting postures were positively correlated with GT3X output (r =.60 and r =.64, p < 0.001, respectively). No significant correlation was found for standing posture (r =.14, p = 0.53).The kappa values between the 7-day SLIPA Log and GT3X variables ranged from 0.09–0.61, indicating poor to good agreement. Conclusion The 7-day SLIPA Log is a valid self-report measure of SB and LIPA in specific behavioral domains.
Resumo:
Introduction: The delivery of health care in the 21st century will look like no other in the past. The fast paced technological advances that are being made will need to transition from the information age into clinical practice. The phenomenon of e-Health is the over-arching form of information technology and telehealth is one arm of that phenomenon. The uptake of telehealth both in Australia and overseas, has changed the face of health service delivery to many rural and remote communities for the better, removing what is known as the tyranny of distance. Many studies have evaluated the satisfaction and cost-benefit analysis of telehealth across the organisational aspects as well as the various adaptations of clinical pathways and this is the predominant focus of most studies published to date. However, whilst comments have been made by many researchers about the need to improve and attend to the communication and relationship building aspects of telehealth no studies have examined this further. The aim of this study was to identify the patient and clinician experiences, concerns, behaviours and perceptions of the telehealth interaction and develop a training tool to assist these clinicians to improve their interaction skills. Methods: A mixed methods design combining quantitative (survey analysis and data coding) and qualitative (interview analysis) approaches was adopted. This study utilised four phases to firstly qualitatively explore the needs of clients (patients) and clinicians within a telehealth consultation then designed, developed, piloted and quantitatively and qualitatively evaluated the telehealth communication training program. Qualitative data was collected and analysed during Phase 1 of this study to describe and define the missing 'communication and rapport building' aspects within telehealth. This data was then utilised to develop a self-paced communication training program that enhanced clinicians existing skills, which comprised of Phase 2 of this study to develop the interactive program. Phase 3 included evaluating the training program with 26 clinicians and results were recorded pre and post training, whilst phase 4 was the pilot for future recommendations of this training program using a patient group within a Queensland Health setting at two rural hospitals. Results: Comparisons of pre and post training data on 1) Effective communication styles, 2) Involvement in communication training package, 3) satisfaction pre and post training, and 4) health outcomes pre and post training indicated that there were differences between pre and post training in relation to effective communication style, increased satisfaction and no difference in health outcomes between pre and post training for this patient group. The post training results revealed over half of the participants (N= 17, 65%) were more responsive to non-verbal cues and were better able to reflect and respond to looks of anxiousness and confusion from a 'patient' within a telehealth consultation. It was also found that during post training evaluations, clinicians had enhanced their therapeutic communication with greater detail to their own body postures, eye contact and presentation. There was greater time spent looking at the 'patient' with an increase of 35 second intervals of direct eye contact and less time spent looking down at paperwork which decreased by 20 seconds. Overall 73% of the clinicians were satisfied with the training program and 61% strongly agreed that they recognised areas of their communication that needed improving during a telehealth consultation. For the patient group there was significant difference post training in rapport with a mean score from 42 (SD = 28, n = 27) to 48 (SD = 5.9, n = 24). For communication comfort of the patient group there was a significant difference between the pre and post training scores t(10) = 27.9, p = .002, which meant that overall the patients felt less inhibited whilst talking to the clinicians and more understood. Conclusion: The aim of this study was to explore the characteristics of good patient-clinician communication and unmet training needs for telehealth consultations. The study developed a training program that was specific for telehealth consultations and not dependent on a 'trainer' to deliver the content. In light of the existing literature this is a first of its kind and a valuable contribution to the research on this topic. It was found that the training program was effective in improving the clinician's communication style and increased the satisfaction of patient's within an e-health environment. This study has identified some historical myths that telehealth cannot be part of empathic patient centred care due to its technology tag.
Resumo:
The lower limb of military vehicle occupants has been the most injured body part due to undervehicle explosions in recent conflicts. Understanding the injury mechanism and causality of injury severity could aid in developing better protection. Therefore, we tested 4 different occupant postures (seated, brace, standing, standing with knee locked in hyper‐extension) in a simulated under‐vehicle explosion (solid blast) using our traumatic injury simulator in the laboratory; we hypothesised that occupant posture would affect injury severity. No skeletal injury was observed in the specimens in seated and braced postures. Severe, impairing injuries were observed in the foot of standing and hyper‐extended specimens. These results demonstrate that a vehicle occupant whose posture at the time of the attack incorporates knee flexion is more likely to be protected against severe skeletal injury to the lower leg.
Resumo:
The rehabilitation programs of bone-anchorage prostheses relying either on the OPRA (Integrum, Sweden) or the ILP (Orthodynamics, Germany) fixation involve some forms of static load bearing exercises (LBE). So far, most of biomechanical studies of these static LBEs focused on the direct measurements of the actual forces and moments applied on the OPRA fixation of individuals with transfemoral amputation (TFA). To date, the proof-of-concept of an apparatus to conduct these kinetic measurements has been presented, along with some preliminary data. The understanding of the kinetic data is essential to improve rehabilitation programs as well as the design of upcoming loading frames. However, kinetic information alone is difficult to interpret without concomitant kinematic data. The purpose of this preliminary study was to introduce a qualitative analysis describing the different body postures during LBE for a group of TFAs.
Resumo:
The aim of the study was to examine differences in total body water (TBW) measured using single-frequency (SF) and multi-frequency (MF) modes of bioelectrical impedance spectroscopy (BIS) in children and adults measured in different postures using the deuterium (2H) dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz) and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF) and intra-cellular fluid (ICF) values differed significantly (p < 0.01) between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01) greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01) lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.
The relationship between forward head posture and cervical muscle performance in healthy individuals
Resumo:
Background Forward head postures (FHP) are proposed to adversely load cervical spine structures. Neck muscles provide support for the neck, and thus an imbalance in neck muscle performance could potentially contribute to the development of FHP. Previous studies have not considered the interaction of multiple muscle groups with regard to postural orientation. Given the interdependence of muscles along the cervical spine for optimal orientation and physical support of the vertebral column, the performance of a single muscle group may not accurately reflect the coordinated ability of the muscles to maintain a neutral neck posture. Purpose The purpose of this study was to investigate the relationship between FHP and the balance between the cervical extensor and flexor muscle groups in healthy individuals. We hypothesised that the magnitude of FHP would be associated with the strength and endurance performance ratios between the cervical extensor and flexor muscle groups. Methods Twenty male and 24 female volunteers were photographed in the sagittal plane wearing surface markers. The FHP of each participant was measured via the tragus-sternum marker distance over two conditions: (1)in relaxed standing and (2)during a sustained sitting task. Maximal strength (Nm) and endurance (s) performance of the extensor and flexor muscle groups were recorded at the upper (craniocervical flexion/extension (CCF/CCE)) and lower (cervicothoracic flexion/extension (CTF/CTE)) cervical regions. Muscle performance measures were expressed as extension:flexion ratios and their relation to FHP evaluated. A stepwise multiple regression analysis using backward elimination was utilised to examine the relationship between the postural measures and the muscle performance ratio measures. Separate models were used for the two different postural conditions (standing, sustained sitting). Gender was included as a constant correction factor in all regression models. Where gender was a significant variable in the model, analyses were repeated separately for males and females. Results Greater FHP in standing was significantly associated with reduced proportional CTE to CCF strength in females (R2 = 0.21, P = 0.03) and greater proportional CTE to CTF strength in males (R2 = 0.23, P = 0.03). A greater drift into FHP during sustained sitting was associated with a relative reduction in CCE endurance proportional to CTF endurance in females only (R2 = 0.27, P = 0.017). Conclusion(s) This initial study indicates that the balance in performance between the cervical flexor and extensor muscle groups may impact FHP in healthy individuals. However, the findings were inconsistent across different muscle performance ratios and gender. Larger scale studies are therefore now needed to further clarify the relationship between FHP and muscle performance. Implications The findings suggest that relative performance of the various cervical muscle groups needs to be accounted for when considering postural correction strategies in the clinical setting, as is often recommended.