454 resultados para Population parameters
em Queensland University of Technology - ePrints Archive
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock when there is individual variability in the von Bertalanffy growth parameter L-infinity and investigate the possible bias in the estimates when the individual variability is ignored. Three methods are examined: (i) the regression method based on the Beverton and Holt's (1956, Rapp. P.V. Reun. Cons. Int. Explor. Mer, 140: 67-83) equation; (ii) the moment method of Powell (1979, Rapp. PV. Reun. Int. Explor. Mer, 175: 167-169); and (iii) a generalization of Powell's method that estimates the individual variability to be incorporated into the estimation. It is found that the biases in the estimates from the existing methods are, in general, substantial, even when individual variability in growth is small and recruitment is uniform, and the generalized method performs better in terms of bias but is subject to a larger variation. There is a need to develop robust and flexible methods to deal with individual variability in the analysis of length-frequency data.
Resumo:
Carrying capacity assessments model a population’s potential self-sufficiency. A crucial first step in the development of such modelling is to examine the basic resource-based parameters defining the population’s production and consumption habits. These parameters include basic human needs such as food, water, shelter and energy together with climatic, environmental and behavioural characteristics. Each of these parameters imparts land-usage requirements in different ways and varied degrees so their incorporation into carrying capacity modelling also differs. Given that the availability and values of production parameters may differ between locations, no two carrying capacity models are likely to be exactly alike. However, the essential parameters themselves can remain consistent so one example, the Carrying Capacity Dashboard, is offered as a case study to highlight one way in which these parameters are utilised. While examples exist of findings made from carrying capacity assessment modelling, to date, guidelines for replication of such studies in other regions and scales have largely been overlooked. This paper addresses such shortcomings by describing a process for the inclusion and calibration of the most important resource-based parameters in a way that could be repeated elsewhere.
Resumo:
Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.
Resumo:
Background: A random QTL effects model uses a function of probabilities that two alleles in the same or in different animals at a particular genomic position are identical by descent (IBD). Estimates of such IBD probabilities and therefore, modeling and estimating QTL variances, depend on marker polymorphism, strength of linkage and linkage disequilibrium of markers and QTL, and the relatedness of animals in the pedigree. The effect of relatedness of animals in a pedigree on IBD probabilities and their characteristics was examined in a simulation study. Results: The study based on nine multi-generational family structures, similar to a pedigree structure of a real dairy population, distinguished by an increased level of inbreeding from zero to 28 % across the studied population. Highest inbreeding level in the pedigree, connected with highest relatedness, was accompanied by highest IBD probabilities of two alleles at the same locus, and by lower relative variation coefficients. Profiles of correlation coefficients of IBD probabilities along the marked chromosomal segment with those at the true QTL position were steepest when the inbreeding coefficient in the pedigree was highest. Precision of estimated QTL location increased with increasing inbreeding and pedigree relatedness. A method to assess the optimum level of inbreeding for QTL detection is proposed, depending on population parameters. Conclusions: An increased overall relationship in a QTL mapping design has positive effects on precision of QTL position estimates. But the relationship of inbreeding level and the capacity for QTL detection depending on the recombination rate of QTL and adjacent informative marker is not linear. © 2010 Freyer et al., licensee BioMed Central Ltd.
Resumo:
The power of testing for a population-wide association between a biallelic quantitative trait locus and a linked biallelic marker locus is predicted both empirically and deterministically for several tests. The tests were based on the analysis of variance (ANOVA) and on a number of transmission disequilibrium tests (TDT). Deterministic power predictions made use of family information, and were functions of population parameters including linkage disequilibrium, allele frequencies, and recombination rate. Deterministic power predictions were very close to the empirical power from simulations in all scenarios considered in this study. The different TDTs had very similar power, intermediate between one-way and nested ANOVAs. One-way ANOVA was the only test that was not robust against spurious disequilibrium. Our general framework for predicting power deterministically can be used to predict power in other association tests. Deterministic power calculations are a powerful tool for researchers to plan and evaluate experiments and obviate the need for elaborate simulation studies.
Resumo:
This chapter uses data from the 2013 Australian Election Study (AES), conducted by Clive Bean, Ian McAllister, Juliet Pietsch and Rachel Gibson (Bean et al. 2014) to investigate political attitudes and voting behaviour in the election. The study was funded by the Australian Research Council and involved a national survey of political attitudes and behaviour using a self-completion questionnaire mailed to respondents on the day before the 7 September election. The sample was a systematic random sample of enrolled voters throughout Australia, drawn by the Australian Electoral Commission. Respondents were given the option of returning the completed questionnaire by reply-paid mail or completing the survey online. Non-respondents were sent several follow-up mailings and the final sample size was 3955, representing a response rate of 34 per cent. The data were weighted to reflect population parameters for gender, age, state and vote.
Resumo:
We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.
Resumo:
Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.
Resumo:
Modelling an environmental process involves creating a model structure and parameterising the model with appropriate values to accurately represent the process. Determining accurate parameter values for environmental systems can be challenging. Existing methods for parameter estimation typically make assumptions regarding the form of the Likelihood, and will often ignore any uncertainty around estimated values. This can be problematic, however, particularly in complex problems where Likelihoods may be intractable. In this paper we demonstrate an Approximate Bayesian Computational method for the estimation of parameters of a stochastic CA. We use as an example a CA constructed to simulate a range expansion such as might occur after a biological invasion, making parameter estimates using only count data such as could be gathered from field observations. We demonstrate ABC is a highly useful method for parameter estimation, with accurate estimates of parameters that are important for the management of invasive species such as the intrinsic rate of increase and the point in a landscape where a species has invaded. We also show that the method is capable of estimating the probability of long distance dispersal, a characteristic of biological invasions that is very influential in determining spread rates but has until now proved difficult to estimate accurately.
Resumo:
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.
Resumo:
A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBD L are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM.
Resumo:
Background It has been proposed that the feral horse foot is a benchmark model for foot health in horses. However, the foot health of feral horses has not been formally investigated. Objectives To investigate the foot health of Australian feral horses and determine if foot health is affected by environmental factors, such as substrate properties and distance travelled. Methods Twenty adult feral horses from five populations (n = 100) were investigated. Populations were selected on the basis of substrate hardness and the amount of travel typical for the population. Feet were radiographed and photographed, and digital images were surveyed by two experienced assessors blinded to each other's assessment and to the population origin. Lamellar samples from 15 feet from three populations were investigated histologically for evidence of laminitis. Results There was a total of 377 gross foot abnormalities identified in 100 left forefeet. There were no abnormalities detected in three of the feet surveyed. Each population had a comparable prevalence of foot abnormalities, although the type and severity of abnormality varied among populations. Of the three populations surveyed by histopathology, the prevalence of chronic laminitis ranged between 40% and 93%. Conclusions Foot health appeared to be affected by the environment inhabited by the horses. The observed chronic laminitis may be attributable to either nutritional or traumatic causes. Given the overwhelming evidence of suboptimal foot health, it may not be appropriate for the feral horse foot to be the benchmark model for equine foot health.
Resumo:
Conservation of free-ranging cheetah (Acinonyx jubatus) populations is multi faceted and needs to be addressed from an ecological, biological and management perspective. There is a wealth of published research, each focusing on a particular aspect of cheetah conservation. Identifying the most important factors, making sense of various (and sometimes contrasting) findings, and taking decisions when little or no empirical data is available, are everyday challenges facing conservationists. Bayesian networks (BN) provide a statistical modeling framework that enables analysis and integration of information addressing different aspects of conservation. There has been an increased interest in the use of BNs to model conservation issues, however the development of more sophisticated BNs, utilizing object-oriented (OO) features, is still at the frontier of ecological research. We describe an integrated, parallel modeling process followed during a BN modeling workshop held in Namibia to combine expert knowledge and data about free-ranging cheetahs. The aim of the workshop was to obtain a more comprehensive view of the current viability of the free-ranging cheetah population in Namibia, and to predict the effect different scenarios may have on the future viability of this free-ranging cheetah population. Furthermore, a complementary aim was to identify influential parameters of the model to more effectively target those parameters having the greatest impact on population viability. The BN was developed by aggregating diverse perspectives from local and independent scientists, agents from the national ministry, conservation agency members and local fieldworkers. This integrated BN approach facilitates OO modeling in a multi-expert context which lends itself to a series of integrated, yet independent, subnetworks describing different scientific and management components. We created three subnetworks in parallel: a biological, ecological and human factors network, which were then combined to create a complete representation of free-ranging cheetah population viability. Such OOBNs have widespread relevance to the effective and targeted conservation management of vulnerable and endangered species.
Resumo:
The aim of the current study was to estimate heritabilities and correlations for body traits at different ages (Weeks 10 and 18 after stocking) in a giant freshwater prawn (Macrobrachium rosenbergii) population selected for fast growth rate in Vietnam. The dataset consisted of 4650 body records (2432 and 2218 records collected at Weeks 10 and 18, respectively) in the full pedigree comprising a total of 18 387 records. Variance and covariance components were estimated using restricted maximum likelihood fitting a multi-trait animal model. Estimates of heritability for body traits (bodyweight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) were moderate and ranged from 0.06 to 0.11 and from 0.11 to 0.22 at Weeks 10 and 18, respectively. Body-trait heritabilities estimated at Week 10 were not significantly lower than at Week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Our results suggested that selection for high growth rate in GFP can be undertaken successfully before full market size has been reached.
Resumo:
The Galapagos archipelago is characterized by a high degree of endemism across many taxa, linked to the archpelago's oceanic origin and distance from other colonizing land masses. A population of ~ 500 American Flamingos (Phoenicopterus ruber) resides in Galapagos, which is thought to share an historical origin with the American Flamingo currently found in the Caribbean region. Genetic and phenotypic parameters in American Flamingos from Galapagos and from the Caribbean were investigated. Microsatellite and microchondrial DNA markers data showed that the American Flamingo population in Galapagos differs genetically from that in the Caribbean. American Flamingos in Galapagos form a clade which differs by a single common nucleotide substitution from American Flamingos in the Caribbean. The genetic differentiation is also evident from nuclear DNA in that microsatellite data reveal a number of private alleles for the American Flamingo in Galapagos. Analysis of skeletal measurements showed that American Flamingos in Galapagos are smaller than those in the Caribbean primarily due to shorter tarsus length, and differences in body shape sexual dimorphism. American Flamingo eggs from Galapagos have smaller linear dimensions and volumes than those from the Caribbean. The findings are consistent with reproductive isolation of American Flamingo population in Galapagos.