7 resultados para Ponderosa pine

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different temperatures. Within all soil moisture regimes, respiration rates always increased with increase in temperature. For a given temperature, soil respiration increased by half (on average) across moisture regimes; Q(10) values declined with soil moisture from 3.2 (at -0.03 MPa) to 2.1 (-1.5 MPa). In summary, soil respiration was generally directly related to temperature, but responses were ameliorated with decrease in soil moisture. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Landscape scale environmental gradients present variable spatial patterns and ecological processes caused by climate, topography and soil characteristics and, as such, offer candidate sites to study environmental change. Data are presented on the spatial pattern of dominant species, biomass, and carbon pools and the temporal pattern of fluxes across a transitional zone shifting from Great Basin Desert scrub, up through pinyon-juniper woodlands and into ponderosa pine forest and the ecotones between each vegetation type. The mean annual temperature (MAT) difference across the gradient is approximately 3 degrees C from bottom to top (MAT 8.5-5.5) and annual precipitation averages from 320 to 530 mm/yr, respectively. The stems of the dominant woody vegetation approach a random spatial pattern across the entire gradient, while the canopy cover shows a clustered pattern. The size of the clusters increases with elevation according to available soil moisture which in turn affects available nutrient resources. The total density of woody species declines with increasing soil moisture along the gl-adient, but total biomass increases. Belowground carbon and nutrient pools change from a heterogenous to a homogenous distribution on either side of the woodlands. Although temperature controls the: seasonal patterns of carbon efflux from the soils, soil moisture appears to be the primary driving variable, but response differs underneath the different dominant species, Similarly, decomposition of dominant litter occurs faster-at the cooler and more moist sites, but differs within sites due to litter quality of the different species. The spatial pattern of these communities provides information on the direction of future changes, The ecological processes that we documented are not statistically different in the ecotones as compared to the: adjoining communities, but are different at sites above the woodland than those below the woodland. We speculate that an increase in MAT will have a major impact on C pools and C sequestering and release processes in these semiarid landscapes. However, the impact will be primarily related to moisture availability rather than direct effects of an increase in temperature. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This presentation discusses and critiques a current case study of a project in which Early Childhood preservice teachers are working in partnership with Design students to develop principles and concepts for the design and construction of an early childhood centre. This centre, to be built on the grounds of the iconic Lone Pine Koala Sanctuary in Brisbane , focuses on Education for Sustainability (EfS), sustainable design and sustainable business. Interdisciplinary initiatives between QUT staff and students from two Faculties (Education and Creative Industries) have been situated in the real –world context of this project. This practical, authentic project has seen stakeholders take an interdisciplinary approach to sustainability, opening up new ways of thinking about early childhood centre design, particularly with respect to operation and function. Interdisciplinarity and a commitment to genuine partnerships have created intellectual spaces to re-think the potential of the disciplines to be interwoven so that future professionals from different fields might come together to learn from each other and to address the sustainability imperative. The case study documents and explores the possibilities that the Lone Pine project offers for academics and students from Early Childhood and Design to collaboratively inform the Sanctuary’s vision for the Centre. The research examines how students benefit from practical, real world, community-integrated learning; how academic staff across two disciplines are able to work collaboratively within a real-world context; and how external stakeholders experience and benefit from the partnership with university staff and students. Data were collected via a series of focus group and individual interviews designed to explore how the various stakeholders (staff, students, business partners) experienced their involvement in the interdisciplinary project. Inductive and deductive thematic analysis of these data suggest many benefits for participants as well as a number of challenges. Findings suggest that the project has provided students with ‘real world’ partnerships that reposition early childhood students’ identities from ‘novice’ to ‘professional’, where their knowledge, expertise and perspectives are simultaneously validated and challenged in their work with designers. These partnerships are enabling preservice teachers to practice a new model of early childhood leadership in sustainability, one that is vital for leading for change in an increasingly complex world. This presentation celebrates, critiques and problematises this project, exploring wider implications for other contexts in which university staff and students may seek to work across traditional boundaries, thus building partnerships for change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This presentation discusses and critiques a current case study of a project in which Early Childhood preservice teachers are working in partnership with Design students to develop principles and concepts for the design and construction of an early childhood centre. This centre, to be built on the grounds of the iconic Lone Pine Koala Sanctuary in Brisbane , focuses on Education for Sustainability (EfS), sustainable design and sustainable business. Interdisciplinary initiatives between QUT staff and students from two Faculties (Education and Creative Industries) have been situated in the real –world context of this project. This practical, authentic project has seen stakeholders take an interdisciplinary approach to sustainability, opening up new ways of thinking about early childhood centre design, particularly with respect to operation and function. Interdisciplinarity and a commitment to genuine partnerships have created intellectual spaces to re-think the potential of the disciplines to be interwoven so that future professionals from different fields might come together to learn from each other and to address the sustainability imperative. The case study documents and explores the possibilities that the Lone Pine project offers for academics and students from Early Childhood and Design to collaboratively inform the Sanctuary’s vision for the Centre. The research examines how students benefit from practical, real world, community-integrated learning; how academic staff across two disciplines are able to work collaboratively within a real-world context; and how external stakeholders experience and benefit from the partnership with university staff and students. Data were collected via a series of focus group and individual interviews designed to explore how the various stakeholders (staff, students, business partners) experienced their involvement in the interdisciplinary project. Inductive and deductive thematic analysis of these data suggest many benefits for participants as well as a number of challenges. Findings suggest that the project has provided students with ‘real world’ partnerships that reposition early childhood students’ identities from ‘novice’ to ‘professional’, where their knowledge, expertise and perspectives are simultaneously validated and challenged in their work with designers. These partnerships are enabling preservice teachers to practice a new model of early childhood leadership in sustainability, one that is vital for leading for change in an increasingly complex world. This presentation celebrates, critiques and problematises this project, exploring wider implications for other contexts in which university staff and students may seek to work across traditional boundaries, thus building partnerships for change.