4 resultados para Polyphonic lieder.
em Queensland University of Technology - ePrints Archive
Resumo:
The use of Cellular Automata (CA) for musical purposes has a rich history. In general the mapping of CA states to note-level music representations has focused on pitch mapping and downplayed rhythm. This paper reports experiments in the application of one-dimensional cellular automata to the generation and evolution of rhythmic patterns. A selection of CA tendencies are identified that can be used as compositional tools to control the rhythmic coherence of monophonic passages and the polyphonic texture of musical works in broad-brush, rather than precisely deterministic, ways. This will provide the composer and researcher with a clearer understanding of the useful application of CAs for generative music.
Resumo:
This thesis consists of a 46,000 word polyphonic novella, Unravel, and an exegesis, Picking at Scabs: the Underside of Grief. The works are companion pieces, sitting side-by-side, and together they plumb the complex depths of loss and its resultant disorder, painful longing, and sorrow. The novella, representing 75% of the work and creative practice, is a multilayered work, which scrapes at the potent unspeakability of the presence of absence in the lives of its chief protagonists, Hana and Guy. As the novella progresses, loss is unraveled to reveal the interplay of remembering and forgetting, past and present and the ways in which these knotty fibres are connected with the strands of memory, trauma, silence, and the uncanny. Each of these threads is woven into the novella and as they plait together, loosen and fray, they expose the mystery, lies and secrets at the core of the novella. The exegesis, which comprises 25% of the thesis, picks at loss to uncover and loosen a complex and worn tangle of knots and loops. In this way, the exegesis and creative work are constantly in dialogue and while neither provides all the answers, both stretch the yarn to reveal an enthusiasm of practice.
Resumo:
This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.
Resumo:
Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called “liquid metal marbles”. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.