192 resultados para Polynomial classifier
em Queensland University of Technology - ePrints Archive
Improved speech recognition using adaptive audio-visual fusion via a stochastic secondary classifier
Resumo:
Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.
Resumo:
Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Resumo:
Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.
Resumo:
A big challenge for classification on text is the noisy of text data. It makes classification quality low. Many classification process can be divided into two sequential steps scoring and threshold setting (thresholding). Therefore to deal with noisy data problem, it is important to describe positive feature effectively scoring and to set a suitable threshold. Most existing text classifiers do not concentrate on these two jobs. In this paper, we propose a novel text classifier with pattern-based scoring that describe positive feature effectively, followed by threshold setting. The thresholding is based on score of training set, make it is simple to implement in other scoring methods. Experiment shows that our pattern-based classifier is promising.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
In a classification problem typically we face two challenging issues, the diverse characteristic of negative documents and sometimes a lot of negative documents that are closed to positive documents. Therefore, it is hard for a single classifier to clearly classify incoming documents into classes. This paper proposes a novel gradual problem solving to create a two-stage classifier. The first stage identifies reliable negatives (negative documents with weak positive characteristics). It concentrates on minimizing the number of false negative documents (recall-oriented). We use Rocchio, an existing recall based classifier, for this stage. The second stage is a precision-oriented “fine tuning”, concentrates on minimizing the number of false positive documents by applying pattern (a statistical phrase) mining techniques. In this stage a pattern-based scoring is followed by threshold setting (thresholding). Experiment shows that our statistical phrase based two-stage classifier is promising.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.