41 resultados para Polyether ether ketones
em Queensland University of Technology - ePrints Archive
Resumo:
Introduction Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce the possibility of product ignition and inhibit the spread of fire, thereby limiting harm caused by fires. PBDEs are incorporated into a wide variety of manufactured products and are now considered an ubiquitous contaminant found worldwide in biological and environmental samples . In comparison to “traditional” persistent organic pollutants (POPs), the exposure modes of PBDEs in humans are less well defined, although dietary sources, inhalation (air/particulate matter) and dust ingestion have been reported 2-4. Limited investigations of population specific factors such as age or gender and PBDE concentrations report: no conclusive correlation by age in adults ; higher concentrations in children ; similar concentrations in maternal and cord blood ; and no gender differences . After preliminary findings of higher PBDE concentrations in children than in adults in Australia11 we sought to investigate at what age the PBDE concentrations peaked in an effort to focus exposure studies. This investigation involved the collection of blood samples from young age groups and the development of a simple model to predict PBDE concentrations by age in Australia.
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) with 2 mol% perfluoropropyl vinyl ether (PPVE) was exposed to γ-irradiation in vacuum at both 77 K and room temperature and the ESR spectra recorded. Both the main chain, CF2–C.F–CF2, and end chain, CF2C.F2 radicals were identified at both temperatures and their thermal stabilities measured. No radicals unique to the radiolytic cleavage at the PPVE units were observed at room temperature, either due to the low concentration of the comonomer or β-scission to form a chain end radical and a non-radical species. G-values for radical formation at room temperature and 77 K were found to be 0.93 and 0.16, respectively.
Resumo:
Introduction Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce the possibility of product ignition and inhibit the spread of fire, thereby limiting harm caused by fires. PBDEs are incorporated into a wide variety of manufactured products and are now considered an ubiquitous contaminant found worldwide in biological and environmental samples1 . In comparison to “traditional” persistent organic pollutants (POPs), the exposure modes of PBDEs in humans are less well defined, although dietary sources, inhalation (air/particulate matter) and dust ingestion have been reported 2-4. Limited investigations of population specific factors such as age or gender and PBDE concentrations report: no conclusive correlation by age in adults; higher concentrations in children ; similar concentrations in maternal and cord blood; and no gender differences. After preliminary findings of higher PBDE concentrations in children than in adults in Australia11 we sought to investigate at what age the PBDE concentrations peaked in an effort to focus exposure studies. This investigation involved the collection of blood samples from young age groups and the development of a simple model to predict PBDE concentrations by age in Australia.
Resumo:
Over the last decade, Ionic Liquids (ILs) have been used for the dissolution and derivatization of isolated cellulose. This ability of ILs is now sought for their application in the selective dissolution of cellulose from lignocellulosic biomass, for the manufacture of cellulosic ethanol. However, there are significant knowledge gaps in the understanding of the chemistry of the interaction of biomass and ILs. While imidazolium ILs have been used successfully to dissolve both isolated crystalline cellulose and components of lignocellulosic biomass, phosphonium ILs have not been sufficiently explored for the use in dissolution of lignocellulosic biomass. This thesis reports on the study of the chemistry of sugarcane bagasse with phosphonium ILs. Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO4) are obtained using attenuated total reflectance-Fourier Transform Infra Red (FTIR). Absorption bands related to cellulose, hemicelluloses and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalysed β-aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The quantitative measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm-1 has demonstrated utility and greater precision than the conventional Klason lignin method. The cleavage of lignin β-aryl ether bonds in sugarcane bagasse by the ionic liquid [P66614]Cl, in the presence of catalytic amounts of mineral acid. (ca. 0.4 %). The delignification process of bagasse is studied over a range of temperatures (120 °C to 150 °C) by monitoring the production of β-ketones (indicative of cleavage of β-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum delignification is obtained at 150 °C, with 52 % of lignin removed from the original lignin content of bagasse. No delignification is observed in the absence of acid which suggests that the reaction is acid catalysed with the IL solubilising the lignin fragments. The rate of delignification was significantly higher at 150 °C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of β-aryl ethers. An attempt has been made to propose a probable mechanism of delignifcation of bagasse with the phosphonuim IL. All polymeric components of bagasse, a lignocellulosic biomass, dissolve in the hydrophilic ionic liquid (IL) tributylmethylphosphonium methylsulfate ([P4441]MeSO4) with and without a catalytic amount of acid (H2SO4, ca. 0.4 %). The presence of acid significantly increases the extent of dissolution of bagasse in [P4441]MeSO4 (by ca. 2.5 times under conditions used here). The dissolved fractions can be partially recovered by the addition of an antisolvent (water) and are significantly enriched in lignin. Unlike acid catalysed dissolution in the hydrophobic IL tetradecyltrihexylphosphonium chloride there is little evidence of cleavage of β-aryl ether bonds of lignin dissolving in [P4441]MeSO4 (with and without acid), but this mechanism may play some role in the acid catalysed dissolution. The XRD of the undissolved fractions suggests that the IL may selectively dissolve the amorphous cellulose component, leaving behind crystalline material.
Resumo:
Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO 4), are obtained using attenuated total reflectance-FTIR. Absorption bands related to cellulose, hemicelluloses, and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO 4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalyzed -aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO 4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm 1 has demonstrated utility. When coupled with the gravimetric Klason lignin method, ATR-FTIR study of reaction mixtures can lead to a better understanding of the delignification process. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
This article reports on the cleavage of lignin ß-aryl ether bonds in sugarcane bagasse by the ionic liquid (IL) trihexyl tetradecyl phosphonium chloride [P66614] Cl, in the presence of catalytic amounts of mineral acid fca. 0.4%). The deligniflcation process of bagasse was studied over a range of temperatures (120°C to 150°C) by monitoring the production of ß-ketones (indicative of cleavage of ß-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum deligniflcation was obtained at 150°C, with 52% of lignin removed from the original lignin content of bagasse. No deligniflcation was observed in the absence of acid, which suggests that the reaction is acid catalyzed with the IL solubilizing the lignin fragments. The rate of deligniflcation was significantly higher at 150°C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of ß-aryl ethers. An attempt has been made to propose a probable mechanism of deligniflcation of bagasse with the phosphonuim IL. © Taylor & Francis Group, LLC.
Resumo:
Previous studies have shown that the human lens contains glycerophospholipids with ether linkages. These lipids differ from conventional glycerophospholipids in that the sn-1 substituent is attached to the glycerol backbone via an 1-O-alkyl or an 1-O-alk-1'-enyl ether rather than an ester bond. The present investigation employed a combination of collision-induced dissociation (CID) and ozone-induced dissociation (OzID) to unambiguously distinguish such 1-O-alkyl and 1-O-alk-1'-enyl ethers. Using these methodologies the human lens was found to contain several abundant 1-O-alkyl glycerophos-phoethanolamines, including GPEtn(16:0e/9Z-18:1), GPEtn(11Z-18:1e/9Z-18:1), and GPEtn(18:0e/9Z-18:1), as well as a related series of unusual 1-O-alkyl glycerophosphoserines, including GPSer(16:0e/9Z-18:1), GPSer(11Z-18:1e/9Z-18:1), GPSer(18:0e/9Z-18:1) that to our knowledge have not previously been observed in human tissue. Isomeric 1-O-alk-1'-enyl ethers were absent or in low abundance. Examination of the double bond position within the phospholipids using OzID revealed that several positional isomers were present, including sites of unsaturation at the n-9, n-7, and even n-5 positions. Tandem CID/OzID experiments revealed a preference for double bonds in the n-7 position of 1-O-ether linked chains, while n-9 double bonds predominated in the ester-linked fatty acids [e.g., GPEtn(11Z-18:1e/9Z-18:1) and GPSer(11Z-18:1e/9Z-18:1)]. Different combinations of these double bond positional isomers within chains at the sn-1 and sn-2 positions point to a remarkable molecular diversity of ether-lipids within the human lens.
Resumo:
Human half-lives of PentaBDE congeners have been estimated from the decline in serum concentrations measured over a 6-12 month period for a population of exchange students moving from North America to Australia. Australian serum PBDE concentrations are typically between 5 -10 times lower than in North America and we can therefore hypothesize that if the biological half-life is sufficiently short we would observe a decline in serum concentration with length of residence in Australia. Thirty students were recruited over a period of 3 years from whom serum were archived every 2 months during their stay in Australia. Australian residents (n=22) were also sampled longitudinally to estimate general population background levels. All serum samples were analyzed by gas chromatography high resolution mass spectrometry. Key findings confirmed that BDE-47 concentrations in the Australians (median 2.3;
Resumo:
Polybrominated diphenyl ethers (PBDEs), a common class of brominated flame retardants, are a ubiquitous part of our built environment, and for many years have contributed to improved public safety by reducing the flammability of everyday goods. Recently, PBDEs have come under increased international attention because of their potential to impact upon the environment and human health. Some PBDE compounds have been nominated for possible inclusion on the Stockholm Convention on Persistent Organic Pollutants, to which Australia is a Party. Work under the Stockholm Convention has demonstrated the capacity of some PBDEs to persist and accumulate in the environment and to be carried long distances. Much is unknown about the impact of PBDEs on living organisms, however recent studies show that some PBDEs can inhibit growth in colonies of plankton and algae and depress the reproduction of zooplankton. Laboratory mice and rats have also shown liver disturbances and damage to developing nervous systems as a result of exposure to PBDEs. In 2004, the Australian Government Department of the Environment and Water Resources began three studies to examine levels of PBDEs in aquatic sediments, indoor environments and human blood, as knowledge about PBDEs in Australia was very limited. The aim of these studies was to improve this knowledge base so that governments were in a better position to consider appropriate management actions. Due to the high costs for laboratory analysis of PBDEs, the number of samples collected for each study was limited and so caution is required when interpreting the findings. Nevertheless, these studies will provide governments with an indication of how prevalent PBDEs are in the Australian population and the environment and will also contribute to international knowledge about these chemicals. The Department of the Environment and Water Resources will be working closely with othergovernment agencies, industry and the community to investigate any further action that may be required to address PBDEs in Australia.
Resumo:
This paper applies concepts Deleuze developed in his ‘Postscript on the Societies of Control’, especially those relating to modulatory power, dividuation and control, to aspects of Australian schooling to explore how this transition is manifesting itself. Two modulatory machines of assessment, NAPLAN and My Schools, are examined as a means to better understand how the disciplinary institution is changing as a result of modulation. This transition from discipline to modulation is visible in the declining importance of the disciplinary teacher–student relationship as a measure of the success of the educative process. The transition occurs through seduction because that which purports to measure classroom quality is in fact a serpent of modulation that produces simulacra of the disciplinary classroom. The effect is to sever what happens in the disciplinary space from its representations in a luminiferous ether that overlays the classroom.